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The Plan for Today

✴ Recap of Multiple Linear Regression.

✴ Inference in Linear Regression.

✴ Estimating the uncertainty of OLS estimates: standard error of the 
regression coefficient and confidence intervals.

✴ Testing hypotheses in OLS: t-statistics and p-values. 

✴ As last time: build up from intuitions about simplest cases.

✴ Finishing up with OLS Assumptions: two more conditions for 
inference with OLS. 
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✴ Our model of reality:

Y = α + β1X1 + β2X2 + β3X3 . . . βpXp + ϵ

✴ Where each  represents the average increase in  associated with a 
one-unit increase in  holding the other variables constant.

βj Y
Xj

✴ How do we pick the coefficients?

✴ The most common method (not the only one!) is Ordinary Least 
Squares (OLS) — choose the combination of coefficients that 
minimise the sum of squared residuals. 
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✴ What are residuals? They are the difference between…

✴ The observed values of , that is Y Y1, Y2, Y3, Y4 . . . Yn

✴ And the fitted values  (that is ) that we get at 
with out prediction line . 

̂Y ̂Y1, ̂Y2, ̂Y3, ̂Y4 . . . ̂Yn
̂Y = α̂ + ̂β1X1 + ̂β2X2 + ̂β3X3 . . . ̂βpXp

✴ Each observation  will have its own residual  i ̂ϵi = Yi − ̂Yi

✴ So OLS will choose   

so that  is minimised. 

Y = α̂ + ̂β1X1 + ̂β2X2 + ̂β3X3 . . . ̂βpXp + ̂ϵ
n

∑
i=1

̂ϵi
2 =

n

∑
i=1

(Y − ̂Yi)2



Multiple Linear Regression with OLS
Dependent variable:

Life Satisfaction (0–10)
Age 0.013*** (0.004)
Income Decile 0.163*** (0.019)
Female 0.288*** (0.100)
Religiosity (0–10) 0.022 (0.017)
Years of Education —0.003 (0.014)
Divorced —0.354 (0.299)
Single —0.118 (0.131)
Widowed —0.412** (0.189)
Constant 5.713*** (0.321)

Observations 1,601
R2 0.078
Adjusted R2 0.073
Residual Std. Error 1.947 (df = 1592)
F Statistic 16.778*** (df = 8; 1592)

Note: *p<0.1; **p<0.05; ***p<0.01
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Multiple Linear Regression with OLS

✴ Interpretation of regression output:

✴ Interval variables: a one-unit increase in  is associated with a  
increase in , holding covariates ( ) constant. 

X1 β
Y X2, X3, X4 . . .

✴ Categorical variables: on average, the predicted difference in  
between [category] and [reference category] is , holding covariates 
( ) constant. 

Y
β

X2, X3, X4 . . .

✴ R2: the model explains (R2) of the variance in . × 100 % Y
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Recap from week 5: Inferential Statistics

✴ We observe a sample mean. How does it relate to the 
population mean? 

✴ Measures of uncertainty:

✴ Standard Error of the sample mean: estimated std. 
deviation of the sample mean across repeated 
sampling from the population. 

✴ 95% Confidence Interval: range of values which in 
95% of the samples includes the population mean.
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OLS as an Estimator

✴ Linear model: theory of the data-generating process in the 
population (informally: in the ‘real world’)

✴ We assume  is a linear function of s (systematic 
component) plus chance  (random/stochastic component). 

Y X
ϵ

✴ OLS is an estimator: produces estimates from the data (the 
sample) of unobserved population parameters.

✴ Just like sample means. But in OLS we get more than one 
estimate of more than one parameter: α̂, ̂β1, ̂β2, ̂β3 . . .
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Uncertainty of OLS Coefficients

✴ Sometimes we can speak of a real population: e.g. the 
BES is a sample of the population of British adults. 

✴ At times, more abstract: the data-generating process has 
a random component, so our data is in a way a subset 
(the sample) of all ‘possible’ outcomes (the population).

✴ This sampling framework allows us to (1) quantify the 
uncertainty of our OLS estimates, and (2) test the 
statistical significance of the relationships they express.
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Standard Errors of OLS Coefficient
Back to Pct. Leave = α + β Pct. Degree + ϵ

Intercept Slope

Population 81.39 -1.05

Sample 1 81.69 -1.10

Sample 2 77.51 -0.93

Sample 3 79.12 -0.97

Sample 4 83.58 -1.15
Mean of 
Sample 

Estimates
⇝ 81.39 ⇝ -1.05

Std. Dev of 
Sample 

Estimates
SE(α) SE(β)



Std. Errors of OLS Coefficients in R
✴ With the summary() function:

 
model1 <- lm(data = brexit, percent_leave ~ percent_degree) 
summary(model1) 

##  
## Call: 
## lm(formula = percent_leave ~ percent_degree, data = brexit) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -23.855  -2.462   2.203   4.819  11.175  
##  
## Coefficients: 
##                Estimate Std. Error t value Pr(>|t|)     
## (Intercept)     81.6906     2.8560   28.60   <2e-16 *** 
## percent_degree  -1.0982     0.1063  -10.33   <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 



Std. Errors of OLS Coefficients in R
✴ Tidied up with stargazer()

stargazer(model1, type = "text") 

##  
## =============================================== 
##                         Dependent variable:     
##                     --------------------------- 
##                            percent_leave        
## ----------------------------------------------- 
## percent_degree               -1.098***          
##                               (0.106)           
##                                                 
## Constant                     81.691***          
##                               (2.856)           
##                                                 
## ----------------------------------------------- 
## Observations                    100             
## R2                             0.521            
## Adjusted R2                    0.517            
## Residual Std. Error       7.099 (df = 98)       
## F Statistic           106.771*** (df = 1; 98)   
## ===============================================
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Standard Errors of OLS Coefficients

✴ The Standard Error of a regression coefficient is the 
standard deviation of the coefficient across hypothetical 
repeated random sampling from the population.

✴ It expresses the uncertainty of the estimated coefficient.

✴ The problem: we do not observe the population. But we 
can estimate it from the sample by making some 
assumptions about the nature of the error term (  
without a hat) in the population.

ϵ
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Standard Errors of OLS Coefficients
✴ One assumption required:

✴ The variance of the error term is constant. Var[ ] = . Known as 
homoskedasticity assumption (more on this later).

ϵi σ2

✴ Under this assumption, in a simple linear regression:

S.E.( ̂β) =
σ2

∑ (xi − x̄)2

✴ Where  is the variance of the errors. But we don’t observe , so we 
approximate it with the variance of the residuals (Var[ ] = ): 

σ2 σ2

̂ϵi ̂σ2

  ̂σ2 = Var( ̂ϵ2) =
∑ ( ̂ϵi − mean( ̂ϵ))2

n − 2
=

∑ ̂ϵ2

n − 2
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Standard Errors of OLS Coefficients

✴ Substituting in …σ2

S.E.( ̂β) =
∑ ̂ϵ2

( 1
n − 2 )∑ (xi − x̄)2

✴ Your standard errors will be larger if…

✴ X does a poor job at predicting Y (  goes up)∑ ϵ2

✴ X does not vary much (  goes down)∑ (xi − x̄)2

✴ Your sample is small (  goes down).1
n − 2
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Generalising to Multiple OLS

Same story, more complex math:

✴ Each variable ( ) will 
have an associated coefficient 
( ), which in turn come 
with their own standard error.

X1, X2 . . .

̂β1, ̂β2

✴ Std. Error of  → estimated 
std. deviation of the slope of 

 across repeated 
hypothetical sampling.

̂β2

X2
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Confidence Intervals of OLS Coefficients

✴ Another way to express uncertainty. Same formula as 
for other estimates (mean, proportion etc.):

✴ C.I.0.95( ̂β) ≈ ̂β ± 1.96 × SE( ̂β)

✴ Different critical values → difference confidence levels.

✴ The confidence interval thus calculated will include the 
‘true’ population slope  in 95% of the (hypothetical, 
random) samples.

β



Confidence Intervals of OLS Coefficients in R

model1 

##  
## Call: 
## lm(formula = percent_leave ~ percent_degree, data = brexit) 
##  
## Coefficients: 
##    (Intercept)  percent_degree   
##         81.691          -1.098 

confint(model1) 

##                    2.5 %     97.5 % 
## (Intercept)    76.022873 87.3582336 
## percent_degree -1.309157 -0.8873202 



Confidence Intervals of OLS Coefficients in R

✴ We also get confidence intervals for  — but we’re 
normally interested in the uncertainty of our slope. 

α̂

model1 

##  
## Call: 
## lm(formula = percent_leave ~ percent_degree, data = brexit) 
##  
## Coefficients: 
##    (Intercept)  percent_degree   
##         81.691          -1.098 

confint(model1) 

##                    2.5 %     97.5 % 
## (Intercept)    76.022873 87.3582336 
## percent_degree -1.309157 -0.8873202 
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Confidence Intervals in Action
Back to Pct. Leave = α + β Pct. Degree + ϵ

Slope S.E. 95% C.I Includes β = 
-1.05?

Population -1.05

Sample 1 -1.10 0.106 (-1.31; -0.88) Yes

Sample 2 -0.93 0.086 (-1.10; -0.76) Yes

Sample 3 -0.97 0.109 (-1.19; -0.75) Yes

Sample 4 -1.15 0.096 (-1.35; -0.97) Yes
Over many 

repeated 
samples…

⇝ -1.05
In 95% (19 
out of 20) 
samples



Visualising Regression with Uncertainty
Dependent variable:

Life Satisfaction (0–10)
Age 0.013*** (0.004)
Income Decile 0.163*** (0.019)
Female 0.288*** (0.100)
Religiosity (0–10) 0.022 (0.017)
Years of Education —0.003 (0.014)
Divorced —0.354 (0.299)
Single —0.118 (0.131)
Widowed —0.412** (0.189)
Constant 5.713*** (0.321)

Observations 1,601
R2 0.078
Adjusted R2 0.073
Residual Std. Error 1.947 (df = 1592)
F Statistic 16.778*** (df = 8; 1592)

Note: *p<0.1; **p<0.05; ***p<0.01
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Visualising Regression with Uncertainty

✴ Coefficient Plot (aka AME 
plot): plots  with 
confidence intervals.

̂β

✴ Drawback: predictors may 
be on very different scales.

✴ Makes most sense when 
you have all categorical 
predictors (e.g. conjoint 
experiment).
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Visualising Regression with Uncertainty
✴ Standardised Coefficient 

Plot: re-scales s and  so 
that they have std. 
deviation of 1.

X Y

✴ Plots  with confidence 
intervals: change in std. 
deviations in  associated 
with one std. deviation 
increase in .

̂β

Y

X

✴ Drawback: categorical 
variables make little sense.
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✴ We observe a sample mean. How does it relate to the 

population mean? 

✴ Hypothesis testing (t-test):

✴ t-statistic (or t-score): difference between sample mean and 
the population mean under the null hypothesis, divided 
by the standard error.

t-statistic of a sample mean = 

✴ p-value (two-tailed): probability of obtaining a test statistic 
at least as extreme as the one we observe, under the null 
hypothesis.  

X̄ − X0

SEX
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Hypothesis Testing in Linear Regression

✴ Commonly, we use regressions to estimate the 
relationship between  and , expressed by the slope.X Y

✴ But if the slope is estimated from a sample, how sure 
can we be that the relationship it expresses is really 
there in the population? With a t-test! 

✴ Maths to make this work require an additional 
assumption: that the error term is normally distributed, 
i.e. .ϵ ∼ 𝒩(0,σ2)
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✴ From a sample of size n, we estimate  = 0.1053.̂β

✴ Assume a population where  and  are completely uncorrelated, 
 where . 

X Y
Yi = α + 0X + ϵi ϵi ∼ 𝒩(0,σ2)

✴ We don’t know the ‘true’ , so we approximate it from the observed 
variance of the residuals .

σ2

̂σ2

✴ If the ‘true’ , how likely is it that, over many samples of size n, 
we get a slope as extreme as ? (i.e.  or )

β = 0
̂β ̂βs > 0.1053 ̂βs < − 0.1053

## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept)   6.5526     0.2173  30.150   <2e-16 *** 
## religiosity   0.1053     0.0471   2.236   0.0262 *   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Hypothesis testing: Intuition
Life Satisfaction = α + βReligiosity + ϵ

Slope

Our Data 0.105

Population under the null 0

Sample 1 from pop. 0.019

Sample 2 from pop. 0.042

Sample 3 from pop. -0.011
Mean Over many repeated 

samples… ⇝ 0

Std. deviation of estimates 
over many repeated samples ≈ SE(β)
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Hypothesis Testing in Linear Regression
1. Specify a Null and an Alternative Hypotheses.

✴ : there is no relationship between X and Y H0

✴ Null hypothesis → β = 0

✴ : there is a relationship between X and YH1

✴  Alternative hypothesis → β ≠ 0

2. Choose a significance level

✴ Conventionally, 95% — or . α = 0.05
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3. Compute the test statistic.

   t-statistic( ̂β) =
̂β − β under the null

SE( ̂β)
=

̂β − 0
SE( ̂β)

=
̂β

SE( ̂β)

4. What’s the critical value?

✴ For , this will be about 1.96 (a bit higher when 
we have small samples or many predictors). 

α = 0.05

✴ Under the null, in 5% of the samples we will get t-
statistics over 1.96 or below . −1.96
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Hypothesis Testing in Linear Regression

5. Is the absolute value of t-statistic larger or equal than 
the critical value?

✴ If , we reject the null at the α = 0.05 level of 
statistical significance, or at the 95% confidence level.

| t | ≥ 1.96

✴ If , we fail to reject the null.| t | < 1.96

✴ Why the absolute value? Because when the estimate is 
negative, the t-statistic will also have a negative sign. 
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t-statistic and p-value in R

summary(model1) 

 
## Coefficients: 
##                Estimate Std. Error t value Pr(>|t|)     
## (Intercept)     81.6906     2.8560   28.60   <2e-16 *** 
## percent_degree  -1.0982     0.1063  -10.33   <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 
## Coefficients: 
##                Estimate Std. Error t value            Pr(>|t|)     
## (Intercept)     81.6906     2.8560   28.60 <0.0000000000000002 *** 
## percent_degree  -1.0982     0.1063  -10.33 <0.0000000000000002 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



 p-values in Regression Tables
Dependent variable:

Life Satisfaction (0–10)
Age 0.013*** (0.004)
Income Decile 0.163*** (0.019)
Female 0.288*** (0.100)
Religiosity (0–10) 0.022 (0.017)
Years of Education —0.003 (0.014)
Divorced —0.354 (0.299)
Single —0.118 (0.131)
Widowed —0.412** (0.189)
Constant 5.713*** (0.321)

Observations 1,601
R2 0.078
Adjusted R2 0.073
Residual Std. Error 1.947 (df = 1592)
F Statistic 16.778*** (df = 8; 1592)

Note: *p<0.1; **p<0.05; ***p<0.01
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Statistical Significance: Warnings

✴ “The relationship is 
significant at the 
99.99% level, so it’s 
likely true/causal/
worth caring about.”

✴ Newcomers to statistics love over-interpreting 
measures of statistical significance like the p-value:  



Don’t Be This Guy
✴ “In 2020, Biden’s tabulated votes (2,474,507) were much 

greater than Clinton’s in 2016. […] I tested the 
hypothesis that the performance of the two Democrat 
[sic] candidates were statistically similar by comparing 
Clinton to Biden. […] I use the calculated Z-score to 
determine the p-value […]. This value corresponds to a 
confidence that I can reject the hypothesis many times 
more than one in a quadrillion times that the two 
outcomes were similar.” 

(Charles Cicchetti, Lawsuit filed by the State of Texas) 
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Statistical Significance: Warnings
1. Your p-value is only as good as your estimate (last slide).

2. You will get ‘lucky’ and find p < 0.05 one in twenty times if 
you regress nonsense on nonsense. Beware of fishing.

3. Statistical significance  Substantive significance. Look at the 
effect size: is it credible? Is it large enough to be meaningful? 

≠

4. Cutoffs are arbitrary (and bad for science): p = 0.049 is just as 
good as p = 0.051. Don’t p-hack your way to significance.

5. Non-significant findings are valuable. Especially if we can 
be very confident about the fact that there’s probably no 
meaningful relationship (‘precise null’). 



Least Squares 
Assumptions: 
An Essential 

Checklist



OLS Assumptions



OLS Assumptions
1. Linearity 



OLS Assumptions
1. Linearity 

✴ The model in the population (the ‘true’ model) can be written as a linear 
combination of variables and coefficients: .Y = α + β1X1 + β2X2 . . . βpXp + ϵ



OLS Assumptions
1. Linearity 

✴ The model in the population (the ‘true’ model) can be written as a linear 
combination of variables and coefficients: .Y = α + β1X1 + β2X2 . . . βpXp + ϵ

2. Random Sampling



OLS Assumptions
1. Linearity 

✴ The model in the population (the ‘true’ model) can be written as a linear 
combination of variables and coefficients: .Y = α + β1X1 + β2X2 . . . βpXp + ϵ

2. Random Sampling

✴ We have a random sample of n observations, following the population model.



OLS Assumptions
1. Linearity 

✴ The model in the population (the ‘true’ model) can be written as a linear 
combination of variables and coefficients: .Y = α + β1X1 + β2X2 . . . βpXp + ϵ

2. Random Sampling

✴ We have a random sample of n observations, following the population model.

3. No Perfect Collinearity



OLS Assumptions
1. Linearity 

✴ The model in the population (the ‘true’ model) can be written as a linear 
combination of variables and coefficients: .Y = α + β1X1 + β2X2 . . . βpXp + ϵ

2. Random Sampling

✴ We have a random sample of n observations, following the population model.

3. No Perfect Collinearity

✴ In the sample, none of the independent variables are constant, and there are no 
exact linear relationships between independent variables.



OLS Assumptions
1. Linearity 

✴ The model in the population (the ‘true’ model) can be written as a linear 
combination of variables and coefficients: .Y = α + β1X1 + β2X2 . . . βpXp + ϵ

2. Random Sampling

✴ We have a random sample of n observations, following the population model.

3. No Perfect Collinearity

✴ In the sample, none of the independent variables are constant, and there are no 
exact linear relationships between independent variables.

4. Zero Conditional Mean (Exogeneity)



OLS Assumptions
1. Linearity 

✴ The model in the population (the ‘true’ model) can be written as a linear 
combination of variables and coefficients: .Y = α + β1X1 + β2X2 . . . βpXp + ϵ

2. Random Sampling

✴ We have a random sample of n observations, following the population model.

3. No Perfect Collinearity

✴ In the sample, none of the independent variables are constant, and there are no 
exact linear relationships between independent variables.

4. Zero Conditional Mean (Exogeneity)

✴ The error term has a mean of zero and is unrelated to any of the Xs. Many 
potential violations in practice: omitted variable bias, non-linear relationships, 
reverse causality.



OLS Assumptions
1. Linearity 

✴ The model in the population (the ‘true’ model) can be written as a linear 
combination of variables and coefficients: .Y = α + β1X1 + β2X2 . . . βpXp + ϵ

2. Random Sampling

✴ We have a random sample of n observations, following the population model.

3. No Perfect Collinearity

✴ In the sample, none of the independent variables are constant, and there are no 
exact linear relationships between independent variables.

4. Zero Conditional Mean (Exogeneity)

✴ The error term has a mean of zero and is unrelated to any of the Xs. Many 
potential violations in practice: omitted variable bias, non-linear relationships, 
reverse causality.

If assumptions 1–4 are satisfied, our OLS coefficient estimates are unbiased
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2. Random Sampling
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5. Constant variance of the error term (Homoskedasticity)

6. Normality of the Error Term
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Homoskedasticity
✴ Default Standard Errors are computed assuming the 

population regression has constant variance 
(homoskedasticity) across values of the s.X

✴ We may diagnose that this assumption is violated 
(heteroskedasticity) from plotting the residuals against 
the independent variables.

✴ Heteroskedasticity biases S.E., but not slope coefficients. 

✴ One popular fix: heteroskedasticity-consistent standard 
errors (more conservative than default standard errors). 
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✴ The error term is independent of the explanatory variables (zero 

conditional mean), has constant variance (homoskedasticity) and is 
normally distributed (normality). 

✴ Least worrisome of the OLS assumptions: 

✴ Only affects t and p-values, not the estimates.

✴ In large samples, we can invoke the central limit theorem to 
conclude that the error term approximates a normal distribution. 
But no easy fix in small samples.

✴ Non-normal errors are usually the result of linearity assumption 
not holding (e.g. Y can only take a limited number of values). If 
you fix that, things are usually fine. 
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about relationships existing in the population.

✴ Requires extra assumptions about the ‘random’ part of 
the data-generating process (i.e. the error term). 

✴ These - especially homoskedasticity - rarely hold in 
observational studies, so ‘default’ S.E. and p-values are 
likely wrong (usually, too small). 

✴ Next week: moving beyond linear additive relationships



Thank you for your kind 
attention!  

Leonardo Carella 
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