Linear Regression II

Introduction to Statistics

I CAN'T BELIEVE SCHOOLS ARE STILL TEACHING KIDS ABOUT THE NULL HYPOTHESIS. I REMEMBER READING A BIG STUDY THAT CONCLUSIVELY

DISPROVED IT HEARS AGO.

* Recap of Multiple Linear Regression.

- * Recap of Multiple Linear Regression.
- * Inference in Linear Regression.
 - * Estimating the *uncertainty* of OLS estimates: standard error of the regression coefficient and confidence intervals.
 - * Testing hypotheses in OLS: *t*-statistics and *p*-values.
 - * As last time: build up from intuitions about simplest cases.

- * Recap of Multiple Linear Regression.
- * Inference in Linear Regression.
 - * Estimating the *uncertainty* of OLS estimates: standard error of the regression coefficient and confidence intervals.
 - * Testing hypotheses in OLS: *t*-statistics and *p*-values.
 - * As last time: build up from intuitions about simplest cases.
- * Finishing up with OLS Assumptions: two more conditions for inference with OLS.

Regression: Recap

* Our model of reality:

* Our model of reality:

 $Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 \dots \beta_p X_p + \epsilon$

* Our model of reality:

 $Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 \dots \beta_p X_p + \epsilon$

* Our model of reality:

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 \dots \beta_p X_p + \epsilon$$

* Where each β_j represents the average increase in *Y* associated with a one-unit increase in X_j holding the other variables constant.

* Our model of reality:

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 \dots \beta_p X_p + \epsilon$$

- * Where each β_j represents the average increase in *Y* associated with a one-unit increase in X_j holding the other variables constant.
- * How do we pick the coefficients?

* Our model of reality:

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 \dots \beta_p X_p + \epsilon$$

- * Where each β_j represents the average increase in *Y* associated with a one-unit increase in X_j holding the other variables constant.
- * How do we pick the coefficients?
- * The most common method (not the only one!) is Ordinary Least
 Squares (OLS) choose the combination of coefficients that
 minimise the sum of squared residuals.

* What are residuals? They are the difference between...

- * What are residuals? They are the difference between...
 - * The **observed values** of *Y*, that is $Y_1, Y_2, Y_3, Y_4 \dots Y_n$

- * What are residuals? They are the difference between...
 - * The **observed values** of *Y*, that is $Y_1, Y_2, Y_3, Y_4 \dots Y_n$
 - * And the **fitted values** \hat{Y} (that is $\hat{Y}_1, \hat{Y}_2, \hat{Y}_3, \hat{Y}_4 \dots \hat{Y}_n$) that we get at with out prediction line $\hat{Y} = \hat{\alpha} + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2 + \hat{\beta}_3 X_3 \dots \hat{\beta}_p X_p$.

- * What are residuals? They are the difference between...
 - * The **observed values** of *Y*, that is $Y_1, Y_2, Y_3, Y_4 \dots Y_n$
 - * And the **fitted values** \hat{Y} (that is $\hat{Y}_1, \hat{Y}_2, \hat{Y}_3, \hat{Y}_4 \dots \hat{Y}_n$) that we get at with out prediction line $\hat{Y} = \hat{\alpha} + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2 + \hat{\beta}_3 X_3 \dots \hat{\beta}_p X_p$.
- * Each observation *i* will have its own residual $\hat{\epsilon}_i = Y_i \hat{Y}_i$

- * What are residuals? They are the difference between...
 - * The **observed values** of *Y*, that is $Y_1, Y_2, Y_3, Y_4 \dots Y_n$
 - * And the **fitted values** \hat{Y} (that is $\hat{Y}_1, \hat{Y}_2, \hat{Y}_3, \hat{Y}_4 \dots \hat{Y}_n$) that we get at with out prediction line $\hat{Y} = \hat{\alpha} + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2 + \hat{\beta}_3 X_3 \dots \hat{\beta}_p X_p$.
- * Each observation *i* will have its own residual $\hat{\epsilon}_i = Y_i \hat{Y}_i$

* So OLS will choose $Y = \hat{\alpha} + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2 + \hat{\beta}_3 X_3 \dots \hat{\beta}_p X_p + \hat{\epsilon}$ so that $\sum_{i=1}^n \hat{\epsilon}_i^2 = \sum_{i=1}^n (Y - \hat{Y}_i)^2$ is minimised.

	Dependent variable:
	Life Satisfaction (0–10)
Age	0.013*** (0.004)
Income Decile	0.163*** (0.019)
Female	0.288*** (0.100)
Religiosity (0–10)	0.022 (0.017)
Years of Education	-0.003 (0.014)
Divorced	-0.354 (0.299)
Single	-0.118 (0.131)
Widowed	-0.412** (0.189)
Constant	5.713*** (0.321)
Observations	1,601
R ²	0.078
Adjusted R ²	0.073
Residual Std. Error	1.947 (df = 1592)
F Statistic	16.778^{***} (df = 8; 1592)

*p<0.1; **p<0.05; ***p<0.01

* Interpretation of regression output:

- * Interpretation of regression output:
- * Interval variables: a one-unit increase in X_1 is associated with a β increase in *Y*, holding covariates ($X_2, X_3, X_4 \dots$) constant.

- * Interpretation of regression output:
- * Interval variables: a one-unit increase in X_1 is associated with a β increase in *Y*, holding covariates ($X_2, X_3, X_4 \dots$) constant.
- * Categorical variables: on average, the predicted difference in *Y* between [category] and [reference category] is β , holding covariates $(X_2, X_3, X_4...)$ constant.

- * Interpretation of regression output:
- * Interval variables: a one-unit increase in X_1 is associated with a β increase in *Y*, holding covariates ($X_2, X_3, X_4 \dots$) constant.
- * Categorical variables: on average, the predicted difference in *Y* between [category] and [reference category] is β , holding covariates $(X_2, X_3, X_4...)$ constant.
- * R²: the model explains (R²) × 100 % of the variance in *Y*.

Inference in Linear Regression

Recap from week 5: Inferential Statistics

Recap from week 5: Inferential Statistics

* We observe a **sample mean**. How does it relate to the **population mean**?

Recap from week 5: Inferential Statistics

- * We observe a **sample mean**. How does it relate to the **population mean**?
- * Measures of uncertainty:
 - Standard Error of the sample mean: estimated std.
 deviation of the sample mean across repeated sampling from the population.
 - * 95% Confidence Interval: range of values which in
 95% of the samples includes the population mean.

OLS as an Estimator

OLS as an Estimator

- * Linear model: theory of the data-generating process in the **population** (informally: in the 'real world')
 - * We assume *Y* is a linear function of *X*s (systematic component) plus chance *ε* (random/stochastic component).

OLS as an Estimator

- * Linear model: theory of the data-generating process in the **population** (informally: in the 'real world')
 - * We assume *Y* is a linear function of *X*s (systematic component) plus chance *ε* (random/stochastic component).
- * OLS is an **estimator**: produces estimates from the data (the **sample**) of unobserved **population** parameters.
 - * Just like sample means. But in OLS we get more than one estimate of more than one parameter: $\hat{\alpha}, \hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_3...$

* Sometimes we can speak of a real population: e.g. the BES is a sample of the *population* of British adults.

- * Sometimes we can speak of a real population: e.g. the BES is a sample of the *population* of British adults.
- * At times, more abstract: the data-generating process has a random component, so our data is in a way a subset (the sample) of all 'possible' outcomes (the population).

- * Sometimes we can speak of a real population: e.g. the BES is a sample of the *population* of British adults.
- * At times, more abstract: the data-generating process has a random component, so our data is in a way a subset (the sample) of all 'possible' outcomes (the population).
- * This sampling framework allows us to (1) quantify the *uncertainty* of our OLS estimates, and (2) test the *statistical significance* of the relationships they express.

	Intercept	Slope
Population	81.39	-1.05
Sample 1	81.69	-1.10

	Intercept	Slope
Population	81.39	-1.05
Sample 1	81.69	-1.10
Sample 2	77.51	-0.93

	Intercept	Slope
Population	81.39	-1.05
Sample 1	81.69	-1.10
Sample 2	77.51	-0.93
Sample 3	79.12	-0.97

Back to Pct. Leave = $\alpha + \beta$ Pct. Degree + ϵ

Over Many Repeated Samples... Intercept Slope **Population** -1.05 81.39 Sample 1 -1.10 81.69 60 Sample 2 77.51 -0.93 Percent Leave Sample 3 79.12 -0.97 Sample 4 83.58 -1.15 40 Mean of Sample **~ 81.39 →** -1.05 **Estimates** Std. Dev of 20 Sample $SE(\alpha)$ **SE(β)** 0 10 20 30 40 50 Percent Degree

Estimates

Std. Errors of OLS Coefficients in R

* With the summary () function:

```
model1 <- lm(data = brexit, percent leave ~ percent degree)</pre>
summary(model1)
##
## Call:
## lm(formula = percent leave ~ percent degree, data = brexit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -23.855 -2.462 2.203 4.819 11.175
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 81.6906 2.8560 28.60 <2e-16 ***
## percent degree -1.0982 0.1063 -10.33 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
```

Std. Errors of OLS Coefficients in R

```
* Tidied up with stargazer()
```

```
stargazer(model1, type = "text")
##
##
##
                       Dependent variable:
##
                       percent_leave
##
##
                       -1.098***
## percent degree
##
                            (0.106)
##
                           81.691***
## Constant
                            (2.856)
##
##
##
## Observations
                             100
## R2
                             0.521
## Adjusted R2
                             0.517
## Residual Std. Error 7.099 (df = 98)
## F Statistic 106.771^{***} (df = 1; 98)
##
```

* The **Standard Error** of a regression coefficient is the standard deviation of the coefficient across hypothetical repeated random sampling from the population.

- * The **Standard Error** of a regression coefficient is the standard deviation of the coefficient across hypothetical repeated random sampling from the population.
- * It expresses the **uncertainty** of the estimated coefficient.

- * The **Standard Error** of a regression coefficient is the standard deviation of the coefficient across hypothetical repeated random sampling from the population.
- * It expresses the **uncertainty** of the estimated coefficient.
- The problem: we do not observe the population. But we can estimate it from the sample by making some assumptions about the nature of the error term (*c* without a hat) in the population.

* One assumption required:

- * One assumption required:
 - * The variance of the error term is constant. Var $[\epsilon_i] = \sigma^2$. Known as **homoskedasticity** assumption (more on this later).

- * One assumption required:
 - * The variance of the error term is constant. Var $[\epsilon_i] = \sigma^2$. Known as **homoskedasticity** assumption (more on this later).
- * Under this assumption, in a **simple linear regression**:

- * One assumption required:
 - * The variance of the error term is constant. Var $[\epsilon_i] = \sigma^2$. Known as **homoskedasticity** assumption (more on this later).
- * Under this assumption, in a **simple linear regression**:

S.E.
$$(\hat{\beta}) = \sqrt{\frac{\sigma^2}{\sum (x_i - \bar{x})^2}}$$

- * One assumption required:
 - * The variance of the error term is constant. Var $[\epsilon_i] = \sigma^2$. Known as **homoskedasticity** assumption (more on this later).
- * Under this assumption, in a **simple linear regression**:

S.E.
$$(\hat{\beta}) = \sqrt{\frac{\sigma^2}{\sum (x_i - \bar{x})^2}}$$

* Where σ^2 is the **variance of the errors**. But we don't observe σ^2 , so we approximate it with the **variance of the residuals** (Var[$\hat{\epsilon}_i$] = $\hat{\sigma}^2$):

- * One assumption required:
 - * The variance of the error term is constant. Var $[\epsilon_i] = \sigma^2$. Known as **homoskedasticity** assumption (more on this later).
- * Under this assumption, in a **simple linear regression**:

S.E.
$$(\hat{\beta}) = \sqrt{\frac{\sigma^2}{\sum (x_i - \bar{x})^2}}$$

* Where σ^2 is the **variance of the errors**. But we don't observe σ^2 , so we approximate it with the **variance of the residuals** (Var[$\hat{\epsilon}_i$] = $\hat{\sigma}^2$):

$$\hat{\sigma}^2 = \operatorname{Var}(\hat{\epsilon}^2) = \frac{\sum (\hat{\epsilon}_i - \operatorname{mean}(\hat{\epsilon}))^2}{n-2} = \frac{\sum \hat{\epsilon}^2}{n-2}$$

S.E.
$$(\hat{\beta}) = \sqrt{\frac{\sum \hat{\epsilon}^2}{(\frac{1}{n-2})\sum (x_i - \bar{x})^2}}$$

* Substituting in σ^2 ...

S.E.
$$(\hat{\beta}) = \sqrt{\frac{\sum \hat{\epsilon}^2}{(\frac{1}{n-2})\sum (x_i - \bar{x})^2}}$$

* Your standard errors will be larger if...

S.E.
$$(\hat{\beta}) = \sqrt{\frac{\sum \hat{\epsilon}^2}{(\frac{1}{n-2})\sum (x_i - \bar{x})^2}}$$

- * Your standard errors will be larger if...
 - * X does a poor job at predicting Y ($\sum e^2$ goes up)

S.E.
$$(\hat{\beta}) = \sqrt{\frac{\sum \hat{\epsilon}^2}{(\frac{1}{n-2})\sum (x_i - \bar{x})^2}}$$

- * Your standard errors will be larger if...
 - * X does a poor job at predicting Y ($\sum \epsilon^2$ goes up)
 - * X does not vary much ($\sum (x_i \bar{x})^2$ goes down)

S.E.
$$(\hat{\beta}) = \sqrt{\frac{\sum \hat{\epsilon}^2}{(\frac{1}{n-2})\sum (x_i - \bar{x})^2}}$$

- * Your standard errors will be larger if...
 - * X does a poor job at predicting Y ($\sum e^2$ goes up)
 - * X does not vary much ($\sum (x_i \bar{x})^2$ goes down)
 - * Your sample is small ($\frac{1}{n-2}$ goes down).

Same story, more complex math:

Same story, more complex math:

* Each variable $(X_1, X_2...)$ will have an associated coefficient $(\hat{\beta}_1, \hat{\beta}_2)$, which in turn come with their own standard error.

Median Age

Same story, more complex math:

* Each variable $(X_1, X_2...)$ will have an associated coefficient $(\hat{\beta}_1, \hat{\beta}_2)$, which in turn come with their own standard error.

Median Age

Same story, more complex math:

* Each variable $(X_1, X_2...)$ will have an associated coefficient $(\hat{\beta}_1, \hat{\beta}_2)$, which in turn come with their own standard error.

Median Age

Same story, more complex math:

- * Each variable $(X_1, X_2...)$ will have an associated coefficient $(\hat{\beta}_1, \hat{\beta}_2)$, which in turn come with their own standard error.
- * Std. Error of $\hat{\beta}_2 \rightarrow$ estimated std. deviation of the slope of X_2 across repeated hypothetical sampling.

* Another way to express uncertainty. Same formula as for other estimates (mean, proportion etc.):

- * Another way to express uncertainty. Same formula as for other estimates (mean, proportion etc.):
- * C.I._{0.95}($\hat{\beta}$) $\approx \hat{\beta} \pm 1.96 \times SE(\hat{\beta})$

* Another way to express uncertainty. Same formula as for other estimates (mean, proportion etc.):

* C.I._{0.95}(
$$\hat{\beta}$$
) $\approx \hat{\beta} \pm 1.96 \times SE(\hat{\beta})$

★ Different critical values → difference confidence levels.

* Another way to express uncertainty. Same formula as for other estimates (mean, proportion etc.):

* C.I._{0.95}(
$$\hat{\beta}$$
) $\approx \hat{\beta} \pm 1.96 \times SE(\hat{\beta})$

- ★ Different critical values → difference confidence levels.
- * The confidence interval thus calculated will include the 'true' population slope β in 95% of the (hypothetical, random) samples.

```
model1
##
## Call:
##
  lm(formula = percent leave ~ percent degree, data = brexit)
##
## Coefficients:
##
  (Intercept) percent degree
                          -1.098
##
          81.691
confint(model1)
                     2.5 % 97.5 %
##
  (Intercept) 76.022873 87.3582336
##
## percent degree -1.309157 -0.8873202
```

```
model1
##
## Call:
##
   lm(formula = percent leave ~ percent degree, data = brexit)
##
## Coefficients:
   (Intercept) percent degree
##
                           -1.098
##
           81.691
confint(model1)
                      2.5 % 97.5 %
##
  (Intercept) 76.022873 87.3582336
##
## percent degree -1.309157 -0.8873202
```

* We also get confidence intervals for $\hat{\alpha}$ — but we're normally interested in the uncertainty of our slope.

	Slope	S.E.	95% C.I	Includes β = -1.05?
Population	-1.05			
Sample 1	-1.10	0.106	(-1.31; -0.88)	Yes

	Slope	S.E.	95% C.I	Includes β = -1.05?
Population	-1.05			
Sample 1	-1.10	0.106	(-1.31; -0.88)	Yes
Sample 2	-0.93	0.086	(-1.10; -0.76)	Yes

	Slope	S.E.	95% C.I	Includes β = -1.05?
Population	-1.05			
Sample 1	-1.10	0.106	(-1.31; -0.88)	Yes
Sample 2	-0.93	0.086	(-1.10; -0.76)	Yes
Sample 3	-0.97	0.109	(-1.19; -0.75)	Yes

	Slope	S.E.	95% C.I	Includes β = -1.05?
Population	-1.05			
Sample 1	-1.10	0.106	(-1.31; -0.88)	Yes
Sample 2	-0.93	0.086	(-1.10; -0.76)	Yes
Sample 3	-0.97	0.109	(-1.19; -0.75)	Yes
Sample 4	-1.15	0.096	(-1.35; -0.97)	Yes

	Slope	S.E.	95% C.I	Includes β = -1.05?
opulation	-1.05			
Sample 1	-1.10	0.106	(-1.31; -0.88)	Yes
Sample 2	-0.93	0.086	(-1.10; -0.76)	Yes
Sample 3	-0.97	0.109	(-1.19; -0.75)	Yes
Sample 4	-1.15	0.096	(-1.35; -0.97)	Yes
Over many repeated samples	→ -1.05			In 95% (19 out of 20) samples

	Dependent variable:
	Life Satisfaction (0–10)
Age	0.013*** (0.004)
Income Decile	0.163*** (0.019)
Female	0.288*** (0.100)
Religiosity (0–10)	0.022 (0.017)
Years of Education	-0.003 (0.014)
Divorced	-0.354 (0.299)
Single	-0.118 (0.131)
Widowed	-0.412** (0.189)
Constant	5.713*** (0.321)
Observations	1,601
R ²	0.078
Adjusted R ²	0.073
Residual Std. Error	1.947 (df = 1592)
F Statistic	16.778^{***} (df = 8; 1592)

*p<0.1; **p<0.05; ***p<0.01

* **Coefficient Plot** (aka AME plot): plots $\hat{\beta}$ with confidence intervals.

- * **Coefficient Plot** (aka AME plot): plots $\hat{\beta}$ with confidence intervals.
- * Drawback: predictors may be on very different scales.

- * **Coefficient Plot** (aka AME plot): plots $\hat{\beta}$ with confidence intervals.
- * Drawback: predictors may be on very different scales.
- Makes most sense when you have all categorical predictors (e.g. conjoint experiment).

* Standardised Coefficient
Plot: re-scales Xs and Y so
that they have std.
deviation of 1.

- * Standardised Coefficient
 Plot: re-scales Xs and Y so
 that they have std.
 deviation of 1.
- * Plots $\hat{\beta}$ with confidence intervals: change in std. deviations in *Y* associated with one std. deviation increase in *X*.

- * Standardised Coefficient
 Plot: re-scales Xs and Y so
 that they have std.
 deviation of 1.
- * Plots $\hat{\beta}$ with confidence intervals: change in std. deviations in *Y* associated with one std. deviation increase in *X*.
- * Drawback: categorical variables make little sense.

* **Predicted Values Plot**: plots \hat{Y} across different values of X_1 , holding $X_2, X_3, X_4 \dots$ constant.

* **Predicted Values Plot**: plots \hat{Y} across different values of X_1 , holding $X_2, X_3, X_4 \dots$ constant.

- * **Predicted Values Plot**: plots \hat{Y} across different values of X_1 , holding $X_2, X_3, X_4 \dots$ constant.
- * Normally: at the mean if continuous, median if ordinal, reference category if categorical.

14 years of education, religiosity = 3

- * **Predicted Values Plot**: plots \hat{Y} across different values of X_1 , holding $X_2, X_3, X_4 \dots$ constant.
- * Normally: at the mean if continuous, median if ordinal, reference category if categorical.
- Confidence interval of the prediction computed from the std. error (smaller around the mean).

- * **Predicted Values Plot**: plots \hat{Y} across different values of X_1 , holding $X_2, X_3, X_4 \dots$ constant.
- * Normally: at the mean if continuous, median if ordinal, reference category if categorical.
- Confidence interval of the prediction computed from the std. error (smaller around the mean).
- Drawback: prediction, uncertainty depend on covariate values, which may not be representative of 'typical' observation.

- * **Predicted Values Plot**: plots \hat{Y} across different values of X_1 , holding $X_2, X_3, X_4 \dots$ constant.
- * Normally: at the mean if continuous, median if ordinal, reference category if categorical.
- Confidence interval of the
 prediction computed from the std.
 error (smaller around the mean).
- Drawback: prediction, uncertainty depend on covariate values, which may not be representative of 'typical' observation.

- * **Predicted Values Plot**: plots \hat{Y} across different values of X_1 , holding $X_2, X_3, X_4 \dots$ constant.
- * Normally: at the mean if continuous, median if ordinal, reference category if categorical.
- Confidence interval of the
 prediction computed from the std.
 error (smaller around the mean).
- Drawback: prediction, uncertainty depend on covariate values, which may not be representative of 'typical' observation.

* We observe a **sample mean**. How does it relate to the **population mean**?

- * We observe a **sample mean**. How does it relate to the **population mean**?
- * Hypothesis testing (*t*-test):
 - *t*-statistic (or *t*-score): difference between sample mean and the population mean under the null hypothesis, divided by the standard error.

- * We observe a **sample mean**. How does it relate to the **population mean**?
- * Hypothesis testing (*t*-test):
 - *t*-statistic (or *t*-score): difference between sample mean and the population mean under the null hypothesis, divided by the standard error.

t-statistic of a sample mean =
$$\frac{\bar{X} - X_0}{SE_X}$$

p-value (two-tailed): probability of obtaining a test statistic at least as extreme as the one we observe, under the null hypothesis.
* Commonly, we use regressions to estimate the relationship between *X* and *Y*, expressed by the slope.

- * Commonly, we use regressions to estimate the relationship between *X* and *Y*, expressed by the slope.
- * But if the slope is estimated **from a sample**, how sure can we be that the relationship it expresses is really there **in the population**? With a *t*-test!

- * Commonly, we use regressions to estimate the relationship between *X* and *Y*, expressed by the slope.
- * But if the slope is estimated **from a sample**, how sure can we be that the relationship it expresses is really there **in the population**? With a *t*-test!
- * Maths to make this work require an additional assumption: that the **error term is normally distributed**, i.e. $\epsilon \sim \mathcal{N}(0, \sigma^2)$.

##	Coefficients	5:								
##		Estimate	Std. Error	t value	Pr(> t)					
##	(Intercept)	6.5526	0.2173	30.150	<2e-16	***				
##	religiosity	0.1053	0.0471	2.236	0.0262	*				
##										
##	Signif. code	es: 0 '**	*' 0.001 '*	**' 0.01	'*' 0.05	'.' ().1	V	V	1

##	Coefficient	S:								
##		Estimate	Std. Error	t value	Pr(> t)					
##	(Intercept)	6.5526	0.2173	30.150	<2e-16	***				
##	religiosity	0.1053	0.0471	2.236	0.0262	*				
##										
##	Signif. code	es: 0 '**	*' 0.001 '	**' 0.01	'*' 0.05	'.'	0.1	T	T	1

* From a sample of size *n*, we estimate $\hat{\beta} = 0.1053$.

##	Coefficient	S:								
##		Estimate	Std. Error	t value	Pr(> t)					
##	(Intercept)	6.5526	0.2173	30.150	<2e-16	***				
##	religiosity	0.1053	0.0471	2.236	0.0262	*				
##										
##	Signif. code	es: 0 '**	** 0.001 '>	**' 0.01	'*' 0.05	'.'	0.1	T	V	1

- * From a sample of size *n*, we estimate $\hat{\beta} = 0.1053$.
- * Assume a population where *X* and *Y* are completely uncorrelated, $Y_i = \alpha + 0X + \epsilon_i$ where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$.

##	Coefficients	S:								
##		Estimate	Std. Error	t value	Pr(> t)					
##	(Intercept)	6.5526	0.2173	30.150	<2e-16	***				
##	religiosity	0.1053	0.0471	2.236	0.0262	*				
##										
##	Signif. code	es: 0 '**	<pre> *' 0.001 ';</pre>	**' 0.01	'*' 0.05	'.'	0.1	T	T	1

- * From a sample of size *n*, we estimate $\hat{\beta} = 0.1053$.
- * Assume a population where *X* and *Y* are completely uncorrelated, $Y_i = \alpha + 0X + \epsilon_i$ where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$.
- * We don't know the 'true' σ^2 , so we approximate it from the observed variance of the residuals $\hat{\sigma}^2$.

##	Coefficients	S:								
##		Estimate	Std. Error	t value	Pr(> t)					
##	(Intercept)	6.5526	0.2173	30.150	<2e-16	***				
##	religiosity	0.1053	0.0471	2.236	0.0262	*				
##										
##	Signif. code	es: 0 '**	*' 0.001 '	**' 0.01	'*' 0.05	'.'	0.1	T	V	1

- * From a sample of size *n*, we estimate $\hat{\beta} = 0.1053$.
- * Assume a population where *X* and *Y* are completely uncorrelated, $Y_i = \alpha + 0X + \epsilon_i$ where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$.
- * We don't know the 'true' σ^2 , so we approximate it from the observed variance of the residuals $\hat{\sigma}^2$.
- * If the 'true' $\beta = 0$, how likely is it that, over many samples of size *n*, we get a slope as extreme as $\hat{\beta}$? (i.e. $\hat{\beta}_s > 0.1053$ or $\hat{\beta}_s < -0.1053$)

Life Satisfaction = $\alpha + \beta$ Religiosity + ϵ

Slope

Our Data

0.105

Life Satisfaction = $\alpha + \beta$ Religiosity + ϵ

	Slope
Our Data	0.105
Population under the null	0

Clara

Life Satisfaction = $\alpha + \beta$ Religiosity + ϵ

	olope
Our Data	0.105
Population under the null	0

Slone

	Slope
Our Data	0.105
Population under the null	0
Sample 1 from pop.	0.019

Life Satisfaction = $\alpha + \beta$ Religiosity + ϵ

	Slope
Our Data	0.105
Population under the null	0
Sample 1 from pop.	0.019

Slopo

	Slope
Our Data	0.105
Population under the null	0
Sample 1 from pop.	0.019
Sample 2 from pop.	0.042

	Slope
Our Data	0.105
Population under the null	0
Sample 1 from pop.	0.019
Sample 2 from pop.	0.042

	Slope
Our Data	0.105
Population under the null	0
Sample 1 from pop.	0.019
Sample 2 from pop.	0.042
Sample 3 from pop.	-0.011

	Slope
Our Data	0.105
Population under the null	0
Sample 1 from pop.	0.019
Sample 2 from pop.	0.042
Sample 3 from pop.	-0.011

Life Satisfaction = $\alpha + \beta$ Religiosity + ϵ

	Slope
Our Data	0.105
Population under the null	0
Sample 1 from pop.	0.019
Sample 2 from pop.	0.042
Sample 3 from pop.	-0.011
Mean Over many repeated samples	→ 0

Slope

	Slope
Our Data	0.105
Population under the null	0
Sample 1 from pop.	0.019
Sample 2 from pop.	0.042
Sample 3 from pop.	-0.011
Mean Over many repeated samples	→ 0
Std. deviation of estimates over many repeated samples	≈ SE(β)

Sample t-values from Population under Null

1. Specify a Null and an Alternative Hypotheses.

- 1. Specify a Null and an Alternative Hypotheses.
- * H_0 : there is no relationship between *X* and *Y*

- 1. Specify a Null and an Alternative Hypotheses.
- * H_0 : there is no relationship between *X* and *Y*
 - * Null hypothesis $\rightarrow \beta = 0$

- 1. Specify a Null and an Alternative Hypotheses.
- * H_0 : there is no relationship between X and Y
 - * Null hypothesis $\rightarrow \beta = 0$
- * H_1 : there is a relationship between *X* and *Y*

- 1. Specify a Null and an Alternative Hypotheses.
- * H_0 : there is no relationship between *X* and *Y*
 - * Null hypothesis $\rightarrow \beta = 0$
- * H_1 : there is a relationship between *X* and *Y*
 - * Alternative hypothesis $\rightarrow \beta \neq 0$

- 1. Specify a Null and an Alternative Hypotheses.
- * H_0 : there is no relationship between *X* and *Y*
 - * Null hypothesis $\rightarrow \beta = 0$
- * H_1 : there is a relationship between *X* and *Y*
 - * Alternative hypothesis $\rightarrow \beta \neq 0$
- 2. Choose a significance level

- 1. Specify a Null and an Alternative Hypotheses.
- * H_0 : there is no relationship between *X* and *Y*
 - * Null hypothesis $\rightarrow \beta = 0$
- * H_1 : there is a relationship between *X* and *Y*
 - * Alternative hypothesis $\rightarrow \beta \neq 0$
- 2. Choose a significance level
- * Conventionally, 95% or $\alpha = 0.05$.
3. Compute the test statistic.

3. Compute the test statistic.

t-statistic(
$$\hat{\beta}$$
) = $\frac{\hat{\beta} - \beta \text{ under the null}}{SE(\hat{\beta})} = \frac{\hat{\beta} - 0}{SE(\hat{\beta})} = \frac{\hat{\beta}}{SE(\hat{\beta})} = \frac{\hat{\beta}}{SE(\hat{\beta})}$

3. Compute the test statistic.

t-statistic(
$$\hat{\beta}$$
) = $\frac{\hat{\beta} - \beta \text{ under the null}}{SE(\hat{\beta})} = \frac{\hat{\beta} - 0}{SE(\hat{\beta})} = \frac{\hat{\beta}}{SE(\hat{\beta})} = \frac{\hat{\beta}}{SE(\hat{\beta})}$

4. What's the critical value?

3. Compute the test statistic.

t-statistic(
$$\hat{\beta}$$
) = $\frac{\hat{\beta} - \beta \text{ under the null}}{SE(\hat{\beta})} = \frac{\hat{\beta} - 0}{SE(\hat{\beta})} = \frac{\hat{\beta}}{SE(\hat{\beta})} = \frac{\hat{\beta}}{SE(\hat{\beta})}$

- 4. What's the critical value?
- * For $\alpha = 0.05$, this will be about 1.96 (a bit higher when we have small samples or many predictors).

3. Compute the test statistic.

t-statistic($\hat{\beta}$) = $\frac{\hat{\beta} - \beta \text{ under the null}}{SE(\hat{\beta})} = \frac{\hat{\beta} - 0}{SE(\hat{\beta})} = \frac{\hat{\beta}}{SE(\hat{\beta})} = \frac{\hat{\beta}}{SE(\hat{\beta})}$

- 4. What's the critical value?
- * For $\alpha = 0.05$, this will be about 1.96 (a bit higher when we have small samples or many predictors).
- ∗ Under the null, in 5% of the samples we will get tstatistics over 1.96 or below −1.96.

5. Is the absolute value of *t*-statistic larger or equal than the critical value?

5. Is the absolute value of *t*-statistic larger or equal than the critical value?

* If $|t| \ge 1.96$, we reject the null at the $\alpha = 0.05$ level of statistical significance, or at the 95% confidence level.

5. Is the absolute value of *t*-statistic larger or equal than the critical value?

- * If $|t| \ge 1.96$, we reject the null at the $\alpha = 0.05$ level of statistical significance, or at the 95% confidence level.
- * If |t| < 1.96, we **fail to reject** the null.

5. Is the absolute value of *t*-statistic larger or equal than the critical value?

- * If $|t| \ge 1.96$, we reject the null at the $\alpha = 0.05$ level of statistical significance, or at the 95% confidence level.
- * If |t| < 1.96, we **fail to reject** the null.
- * Why the absolute value? Because when the estimate is negative, the *t*-statistic will also have a negative sign.

* The *p*-value summarises our evidence against the null hypothesis, just like the *t*-statistic.

- * The *p*-value summarises our evidence against the null hypothesis, just like the *t*-statistic.
- * It's the probability of observing a *t*-statistic (and therefore an estimate) at least as extreme as one we observe, under the null hypothesis.

- * The *p*-value summarises our evidence against the null hypothesis, just like the *t*-statistic.
- * It's the probability of observing a *t*-statistic (and therefore an estimate) at least as extreme as one we observe, under the null hypothesis.
- * A *p*-value below 0.05 means we reject the null at the 95% confidence level. Below 0.01, we reject the null at the 99% confidence level, and so on.

- * The *p*-value summarises our evidence against the null hypothesis, just like the *t*-statistic.
- * It's the probability of observing a *t*-statistic (and therefore an estimate) at least as extreme as one we observe, under the null hypothesis.
- * A *p*-value below 0.05 means we reject the null at the 95% confidence level. Below 0.01, we reject the null at the 99% confidence level, and so on.
- * It's **NOT** the probability that the null is true.

- * The *p*-value summarises our evidence against the null hypothesis, just like the *t*-statistic.
- * It's the probability of observing a *t*-statistic (and therefore an estimate) at least as extreme as one we observe, under the null hypothesis.
- * A *p*-value below 0.05 means we reject the null at the 95% confidence level. Below 0.01, we reject the null at the 99% confidence level, and so on.

- * The *p*-value summarises our evidence against the null hypothesis, just like the *t*-statistic.
- * It's the probability of observing a *t*-statistic (and therefore an estimate) at least as extreme as one we observe, under the null hypothesis.
- * A *p*-value below 0.05 means we reject the null at the 95% confidence level. Below 0.01, we reject the null at the 99% confidence level, and so on. T the provident that

is true

- * The *p*-value summarises our evidence against the null hypothesis, just like the *t*-statistic.
- * It's the probability of observing a *t*-statistic (and therefore an estimate) at least as extreme as one we observe, under the null hypothesis.
- * A *p*-value below 0.05 means we reject the null at the 95% confidence level. Below 0.01, we reject the null at the 99% confidence level, and so on.

t-statistic and *p*-value in R

```
summary(model1)
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
                            2.8560 28.60 <2e-16 ***
## (Intercept) 81.6906
## percent degree -1.0982 0.1063 -10.33 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Coefficients:
                Estimate Std. Error t value
##
                                                    Pr(>|t|)
## (Intercept) 81.6906
                            2.8560 28.60 < 0.00000000000000 ***
## percent degree -1.0982 0.1063 -10.33 <0.000000000000002 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

p-values in Regression Tables

	Dependent variable:
	Life Satisfaction (0–10)
Age	0.013*** (0.004)
Income Decile	0.163*** (0.019)
Female	0.288*** (0.100)
Religiosity (0–10)	0.022 (0.017)
Years of Education	-0.003 (0.014)
Divorced	-0.354 (0.299)
Single	-0.118 (0.131)
Widowed	-0.412** (0.189)
Constant	5.713*** (0.321)
Observations	1,601
R ²	0.078
Adjusted R ²	0.073
Residual Std. Error	1.947 (df = 1592)
F Statistic	16.778*** (df = 8; 1592)

*p<0.1; **p<0.05; ***p<0.01

* Newcomers to statistics love **over-interpreting** measures of statistical significance like the *p*-value:

* Newcomers to statistics love **over-interpreting** measures of statistical significance like the *p*-value:

* "The relationship is significant at the 99.99% level, so it's likely true / causal / worth caring about."

Don't Be This Guy

* "In 2020, Biden's tabulated votes (2,474,507) were much greater than Clinton's in 2016. [...] I tested the hypothesis that the performance of the two Democrat [sic] candidates were statistically similar by comparing Clinton to Biden. [...] I use the calculated Z-score to determine the p-value [...]. This value corresponds to a confidence that I can reject the hypothesis many times more than one in a quadrillion times that the two outcomes were similar."

(Charles Cicchetti, Lawsuit filed by the State of Texas)

1. Your *p*-value is **only as good as your estimate** (last slide).

- 1. Your *p*-value is **only as good as your estimate** (last slide).
- 2. You will get 'lucky' and find *p* < 0.05 one in twenty times if you regress nonsense on nonsense. **Beware of fishing**.

- 1. Your *p*-value is **only as good as your estimate** (last slide).
- 2. You will get 'lucky' and find *p* < 0.05 one in twenty times if you regress nonsense on nonsense. **Beware of fishing**.
- 3. Statistical significance ≠ Substantive significance. Look at the effect size: is it credible? Is it large enough to be meaningful?

- 1. Your *p*-value is **only as good as your estimate** (last slide).
- 2. You will get 'lucky' and find *p* < 0.05 one in twenty times if you regress nonsense on nonsense. **Beware of fishing**.
- 3. Statistical significance ≠ Substantive significance. Look at the effect size: is it credible? Is it large enough to be meaningful?
- 4. Cutoffs are arbitrary (and bad for science): p = 0.049 is just as good as p = 0.051. **Don't p-hack your way to significance**.

- 1. Your *p*-value is **only as good as your estimate** (last slide).
- 2. You will get 'lucky' and find *p* < 0.05 one in twenty times if you regress nonsense on nonsense. **Beware of fishing**.
- 3. Statistical significance ≠ Substantive significance. Look at the effect size: is it credible? Is it large enough to be meaningful?
- 4. Cutoffs are arbitrary (and bad for science): p = 0.049 is just as good as p = 0.051. **Don't p-hack your way to significance**.
- 5. **Non-significant findings are valuable**. Especially if we can be very confident about the fact that there's probably no meaningful relationship ('precise null').

Least Squares Assumptions: An Essential Checklist

1. Linearity

- 1. Linearity
 - * The model **in the population** (the 'true' model) can be written as a linear combination of variables and coefficients: $Y = \alpha + \beta_1 X_1 + \beta_2 X_2 \dots \beta_p X_p + \epsilon$.

- 1. Linearity
 - * The model **in the population** (the 'true' model) can be written as a linear combination of variables and coefficients: $Y = \alpha + \beta_1 X_1 + \beta_2 X_2 \dots \beta_p X_p + \epsilon$.
- 2. Random Sampling
- 1. Linearity
 - * The model **in the population** (the 'true' model) can be written as a linear combination of variables and coefficients: $Y = \alpha + \beta_1 X_1 + \beta_2 X_2 \dots \beta_p X_p + \epsilon$.
- 2. Random Sampling
 - * We have a **random sample** of *n* observations, following the population model.

- 1. Linearity
 - * The model **in the population** (the 'true' model) can be written as a linear combination of variables and coefficients: $Y = \alpha + \beta_1 X_1 + \beta_2 X_2 \dots \beta_p X_p + \epsilon$.
- 2. Random Sampling
 - * We have a **random sample** of *n* observations, following the population model.
- 3. No Perfect Collinearity

- 1. Linearity
 - * The model **in the population** (the 'true' model) can be written as a linear combination of variables and coefficients: $Y = \alpha + \beta_1 X_1 + \beta_2 X_2 \dots \beta_p X_p + \epsilon$.
- 2. Random Sampling
 - * We have a **random sample** of *n* observations, following the population model.
- 3. No Perfect Collinearity
 - * In the sample, none of the independent variables are **constant**, and there are no **exact linear relationships** between independent variables.

- 1. Linearity
 - * The model **in the population** (the 'true' model) can be written as a linear combination of variables and coefficients: $Y = \alpha + \beta_1 X_1 + \beta_2 X_2 \dots \beta_p X_p + \epsilon$.
- 2. Random Sampling
 - * We have a **random sample** of *n* observations, following the population model.
- 3. No Perfect Collinearity
 - * In the sample, none of the independent variables are **constant**, and there are no **exact linear relationships** between independent variables.
- 4. Zero Conditional Mean (Exogeneity)

- 1. Linearity
 - * The model **in the population** (the 'true' model) can be written as a linear combination of variables and coefficients: $Y = \alpha + \beta_1 X_1 + \beta_2 X_2 \dots \beta_p X_p + \epsilon$.
- 2. Random Sampling
 - * We have a **random sample** of *n* observations, following the population model.
- 3. No Perfect Collinearity
 - * In the sample, none of the independent variables are **constant**, and there are no **exact linear relationships** between independent variables.
- 4. Zero Conditional Mean (Exogeneity)
 - * The error term has a **mean of zero** and is **unrelated to any of the** *Xs*. *Many potential violations in practice:* omitted variable bias, non-linear relationships, reverse causality.

- 1. Linearity
 - * The model **in the population** (the 'true' model) can be written as a linear combination of variables and coefficients: $Y = \alpha + \beta_1 X_1 + \beta_2 X_2 \dots \beta_p X_p + \epsilon$.
- 2. Random Sampling
 - * We have a **random sample** of *n* observations, following the population model.
- 3. No Perfect Collinearity
 - * In the sample, none of the independent variables are **constant**, and there are no **exact linear relationships** between independent variables.
- 4. Zero Conditional Mean (Exogeneity)
 - * The error term has a **mean of zero** and is **unrelated to any of the** *Xs*. *Many potential violations in practice:* omitted variable bias, non-linear relationships, reverse causality.

If assumptions 1–4 are satisfied, our OLS coefficient estimates are unbiased

Classical Linear Model Assumptions

- 1. Linearity
- 2. Random Sampling
- 3. No Perfect Collinearity
- 4. Zero Conditional Mean (Exogeneity)
- 5. Constant variance of the error term (Homoskedasticity)
- 6. Normality of the Error Term

Default Standard Errors are computed assuming the population regression has constant variance (homoskedasticity) across values of the *X*s.

- Default Standard Errors are computed assuming the population regression has constant variance (homoskedasticity) across values of the Xs.
- * We may diagnose that this assumption is violated (heteroskedasticity) from plotting the residuals against the independent variables.

- Default Standard Errors are computed assuming the population regression has constant variance (homoskedasticity) across values of the *X*s.
- * We may diagnose that this assumption is violated (heteroskedasticity) from plotting the residuals against the independent variables.
- * Heteroskedasticity biases S.E., but not slope coefficients.

- Default Standard Errors are computed assuming the population regression has constant variance (homoskedasticity) across values of the *X*s.
- * We may diagnose that this assumption is violated (heteroskedasticity) from plotting the residuals against the independent variables.
- * Heteroskedasticity biases S.E., but not slope coefficients.
- * One popular fix: heteroskedasticity-consistent standard errors (more conservative than default standard errors).

Violation of Homoskedasticity Assumption

Violation of Homoskedasticity Assumption

Classical Linear Model Assumptions

- 1. Linearity
- 2. Random Sampling
- 3. No Perfect Collinearity
- 4. Zero Conditional Mean (Exogeneity)
- 5. Constant variance of the error term (Homoskedasticity)
- 6. Normality of the Error Term

The error term is independent of the explanatory variables (zero conditional mean), has constant variance (homoskedasticity) and is normally distributed (normality).

- The error term is independent of the explanatory variables (zero conditional mean), has constant variance (homoskedasticity) and is normally distributed (normality).
- * Least worrisome of the OLS assumptions:

- The error term is independent of the explanatory variables (zero conditional mean), has constant variance (homoskedasticity) and is normally distributed (normality).
- * Least worrisome of the OLS assumptions:
 - * Only affects *t* and *p*-values, not the estimates.

- The error term is independent of the explanatory variables (zero conditional mean), has constant variance (homoskedasticity) and is normally distributed (normality).
- * Least worrisome of the OLS assumptions:
 - * Only affects *t* and *p*-values, not the estimates.
 - * In large samples, we can invoke the central limit theorem to conclude that the error term approximates a normal distribution.
 But no easy fix in small samples.

- The error term is independent of the explanatory variables (zero conditional mean), has constant variance (homoskedasticity) and is normally distributed (normality).
- * Least worrisome of the OLS assumptions:
 - * Only affects *t* and *p*-values, not the estimates.
 - * In large samples, we can invoke the central limit theorem to conclude that the error term approximates a normal distribution.
 But no easy fix in small samples.
 - * Non-normal errors are usually the result of linearity assumption not holding (e.g. Y can only take a limited number of values). If you fix that, things are usually fine.

* **Sampling framework** allows us to derive measures of uncertainty of sample estimates, and test hypotheses about relationships existing in the population.

- * **Sampling framework** allows us to derive measures of uncertainty of sample estimates, and test hypotheses about relationships existing in the population.
- * Requires extra assumptions about the 'random' part of the data-generating process (i.e. the error term).

- * **Sampling framework** allows us to derive measures of uncertainty of sample estimates, and test hypotheses about relationships existing in the population.
- * Requires extra assumptions about the 'random' part of the data-generating process (i.e. the error term).
- * These especially **homoskedasticity** rarely hold in observational studies, so 'default' S.E. and *p*-values are likely wrong (usually, too small).

- * **Sampling framework** allows us to derive measures of uncertainty of sample estimates, and test hypotheses about relationships existing in the population.
- * Requires extra assumptions about the 'random' part of the data-generating process (i.e. the error term).
- * These especially **homoskedasticity** rarely hold in observational studies, so 'default' S.E. and *p*-values are likely wrong (usually, too small).
- * Next week: moving beyond linear additive relationships

Thank you for your kind attention!

Leonardo Carella leonardo.carella@nuffield.ox.ac.uk