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✴ OLS Assumptions

✴ Four conditions for unbiased estimation with OLS. 

✴ Next week: two additional assumptions for efficient estimation.



Disclaimers



Disclaimers
✴ This is a lot. It’s okay not to get everything first time.

✴ We’ll revisit regressions over the next two weeks. 



Disclaimers
✴ This is a lot. It’s okay not to get everything first time.

✴ We’ll revisit regressions over the next two weeks. 

✴ We won’t be able to follow all the math. 

✴ Our aim: develop intuitive/geometric understanding of 
simplest cases; generalise from there.  



Disclaimers
✴ This is a lot. It’s okay not to get everything first time.

✴ We’ll revisit regressions over the next two weeks. 

✴ We won’t be able to follow all the math. 

✴ Our aim: develop intuitive/geometric understanding of 
simplest cases; generalise from there.  

✴ Lots of assumptions ‘under the hood’.

✴ Our aim: understand pitfalls and limitations of OLS. More in 
the lab + next week on diagnostics and potential remedies. 
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Simple Linear Regression Model
✴ Assumes a model of the data-generating process where  is a 

linear function of , plus some chance error :
Y

X ϵ

 Yi = α + βXi + ϵi

✴ This is a model, a mathematical representation of our assumption 
that there is a linear relationship between  and . X Y

✴  and  represent the true, unknown intercept and slope of the line 
of best fit. These are often called parameters. 
α β

✴   represents the chance error:  will not return the exact 
value of  but each observation will fall somewhere below or above 
the line. Assumption: this discrepancy is random. 

ϵi α + βXi
Yi
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Simple Linear Regression with OLS

✴ OLS = Ordinary Least Squares. It’s an estimator, like e.g. the sample 
means and the sample proportion.

✴ Goal of OLS: estimating  and  in the population from a sample.α β

 ̂Yi = α̂ + ̂βXi

✴  = fitted values, our prediction of  for each observation.̂Y Y

✴  and  = coefficients; our estimate of intercept and slope.α̂ ̂β
✴ Coefficients are notated with a ‘hat’ because they are estimates, not 

the ‘real’ parameters; fitted values also come with a ‘hat’ because 
they depend on  and .α̂ ̂β
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Simple Linear Regression with OLS
✴ OLS estimates a line  that minimises the sum of 

squared residuals. 
̂Yi = α̂ + ̂βXi

✴ The residual for observation i is : the difference between 
the actual, observed value of  and our prediction.

̂ϵi ≡ Yi − Ŷi
Yi

✴ So, OLS computes…  

  min
α̂, ̂β

n

∑
i=1

( ̂ϵi)2 = min
α̂, ̂β

n

∑
i=1

(Yi − Ŷi)2 = min
α̂, ̂β

n

∑
i=1

(Yi − α̂ − ̂βXi)2

✴ You can solve for  and  with calculus (but we’ll let R do it for us!) α̂ ̂β
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Simple OLS in R
model1 <- lm(data = brexit, percent_leave ~ percent_degree) 
summary(model1) 

##  
## Call: 
## lm(formula = percent_leave ~ percent_degree, data = brexit) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -23.855  -2.462   2.203   4.819  11.175  
##  
## Coefficients: 
##                Estimate Std. Error t value Pr(>|t|)     
## (Intercept)     81.6906     2.8560   28.60   <2e-16 *** 
## percent_degree  -1.0982     0.1063  -10.33   <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 7.099 on 98 degrees of freedom 
## Multiple R-squared:  0.5214, Adjusted R-squared:  0.5165  
## F-statistic: 106.8 on 1 and 98 DF,  p-value: < 2.2e-16 
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✴ When X is a 0-1 
binary variable:

✴  is the mean of X 
for X = 0.
α

✴  is the mean 
for X = 1.
α + β

✴  is the difference-
in-means. 
β



Simple OLS: Special Case in R
  model2 <- lm(data = brexit, percent_leave ~ scotland) 
  model2 

##  
## Call: 
## lm(formula = percent_leave ~ scotland, data = brexit) 
##  
## Coefficients: 
## (Intercept)     scotland   
##       55.33       -17.07 

    brexit %>% group_by(scotland) %>%  
    summarise(mean_pct_leave = mean(percent_leave)) %>% 
    mutate(diff_in_means = mean_pct_leave - lag(mean_pct_leave))  

## # A tibble: 2 × 3 
##   scotland mean_pct_leave diff_in_means 
##      <dbl>          <dbl>         <dbl> 
## 1        0           55.3          NA   
## 2        1           38.3         -17.1 
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Regression: why bother?

✴ Prediction: make guesses for out-of-sample 
observations — e.g. constituency-level Brexit vote.

✴ Description: describe the relationship between an 
explanatory variable  and an outcome variable .  X Y

✴ Causal Inference: estimate the effect of  on  — only 
possible under very strong assumptions!

X Y
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Why add independent variables?

✴ Prediction: richer models give us more precise in-
sample guesses and can get us to better out-of-sample 
guesses too (though not necessarily). 

✴ Description: describe the relationship between  and , 
conditional on  — or ‘controlling’ for . 

X Y
Z Z

✴ Causal Inference: account for confounders to model 
counterfactual outcomes — effect of  on  ‘holding all 
else equal’. Again, requires very strong assumptions.

X Y
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Multiple OLS with Two Predictors

✴ Our model of reality:  as a linear, additive function of  and :Y X1 X2

 Y = α + β1X1 + β2X2 + ϵ

✴ For instance: 

 Pct. Leavei = α + β1Pct. Degreesi + β2Scotlandi + ϵi

✴ Same least-square solution as the bivariate case: 

✴ Choose ,  and  so that in  the sum of 

squared residuals  is minimised.

α̂ ̂β1
̂β2

̂Y = α̂ + ̂β1X1 + ̂β2X2n

∑
i=1

( ̂ϵi)2 =
n

∑
i=1

(Yi − Ŷi)2



Multiple OLS in R
model3 <- lm(data = brexit, percent_leave ~ percent_degree + scotland) 
model3 
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## Call: 
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## Coefficients: 
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Multiple OLS with Two Interval Predictors

✴ Pct. Leavei = α + β1Pct. Degreesi + β2Median Agei + ϵi

✴  = predicted value of  when  and α Y X1 = 0 X2 = 0

✴  = change in  associated with a one-percentage point 
increase in Pct. Degrees, holding Median Age constant.
β1 Y

✴  = change in  associated with a one-year increase in Median 
Age, holding Percentage of Residents with Degrees constant.
β2 Y

## Call: 
## lm(formula = percent_leave ~ percent_degree + median_age, data = brexit) 
##  
## Coefficients: 
##    (Intercept)  percent_degree      median_age   
##        67.3170         -1.0783          0.3296 
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binary regressions (Frisch-Waugh-Lovell theorem):
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X Z

✴ Regress  on , extract the residuals : this is the 
component of  that is not explained by .

Y Z ̂ϵy
Y Z

✴ Regress  on  — obtain .̂ϵy ̂ϵx β1
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‘Partialing Out’ Interpretation
   
# Multiple OLS 
    model4 <- lm(data = brexit, percent_leave ~ percent_degree + median_age) 
    coef(model4)[2] 

## percent_degree  
##      -1.078349 

# Regress X on Z, extract residuals 
    residuals_degree <- residuals(lm(data = brexit, percent_degree ~ median_age)) 
# Regress Y on Z, extract residuals 
    residuals_leave <- residuals(lm(data = brexit, percent_leave ~ median_age)) 
# Regress residuals of Y on residuals of X 
    residuals_regression <- lm(residuals_leave ~ residuals_degree) 
    coef(residuals_regression)[2] 

## residuals_degree  
##        -1.078349 
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More Predictors!
✴ Same story, more s:X

✴   Y = α + β1X1 + β2X2 + β3X3 . . . βnXn + ϵ

 
Pct. Leave = α + β1Pct. Degrees + β2Scotland
+β3Median Age + β4Weekly Earnings + ϵ

✴ Harder to interpret geometrically: “fitting hyperplanes through 
multi-dimensional clouds of data points” (?)

✴ Partialing out interpretation:  as the effect of the component 
of  that is uncorrelated with  on the component of  
that is uncorrelated with .

β1
X1 X2, X3, X4 Y

X2, X3, X4



Multiple OLS in R
 
## Call: 
## lm(formula = percent_leave ~ percent_degree + scotland + median_age +  
##     median_earnings, data = brexit) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -14.2901  -2.2878   0.5524   2.7745   9.5145  
##  
## Coefficients: 
##                   Estimate Std. Error t value  Pr(>|t|)     
## (Intercept)      56.225003   5.329834  10.549   < 2e-16 *** 
## percent_degree   -1.203281   0.086124 -13.971   < 2e-16 *** 
## scotland        -16.079284   1.228432 -13.089   < 2e-16 *** 
## median_age        0.380043   0.082719   4.594 0.0000133 *** 
## median_earnings   0.027371   0.009446   2.897   0.00467 **  
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 4.122 on 95 degrees of freedom 
## Multiple R-squared:  0.8436, Adjusted R-squared:  0.837  
## F-statistic: 128.1 on 4 and 95 DF,  p-value: < 2.2e-16



Multiple OLS in R
stargazer(model5, type = "text", single.row = T) 

##  
## =============================================== 
##                         Dependent variable:     
##                     --------------------------- 
##                            percent_leave        
## ----------------------------------------------- 
## percent_degree           -1.203*** (0.086)      
## scotland                -16.079*** (1.228)      
## median_age               0.380*** (0.083)       
## median_earnings          0.027*** (0.009)       
## Constant                 56.225*** (5.330)      
## ----------------------------------------------- 
## Observations                    100             
## R2                             0.844            
## Adjusted R2                    0.837            
## Residual Std. Error       4.122 (df = 95)       
## F Statistic           128.105*** (df = 4; 95)   
## =============================================== 
## Note:               *p<0.1; **p<0.05; ***p<0.01 
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Categorical Predictors
✴ So far, our Xs have been interval or 0-1 binary variables. What 

if we want to control for a categorical variable?

✴ Trick: a categorical variable with  categories can be recoded 
as  binary variables.

n
n − 1

✴ Scotland/non-Scotland  one 0-1 variable→

✴ Scotland/Wales/Rest of UK  two 0-1 variables:  
Scotland/non-Scotland, Wales/non-Wales.

→

✴ Married/Divorced/Single/Widowed  three 0-1 variables.→

✴ R does this automatically when we pass a categorical 
predictors in the lm() function. 



Life Satisfaction (0-10) = α + β1Divorced + β2Widowed + β3Single + ϵ

##  
## Call: 
## lm(formula = life_satisf ~ marital_status, data = ess) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -7.5697 -0.7800  0.4303  1.4303  3.2200  
##  
## Coefficients: 
##                         Estimate Std. Error t value Pr(>|t|)     
## (Intercept)              7.56966    0.06361 118.994  < 2e-16 *** 
## marital_status divorced -0.78966    0.29810  -2.649  0.00814 **  
## marital_status single   -0.57286    0.10413  -5.501 4.27e-08 *** 
## marital_status widowed  -0.50299    0.15570  -3.231  0.00126 **  
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 



Life Satisfaction (0-10) = α + β1Divorced + β2Widowed + β3Single + ϵ

✴ Why no coefficient for married?

##  
## Call: 
## lm(formula = life_satisf ~ marital_status, data = ess) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -7.5697 -0.7800  0.4303  1.4303  3.2200  
##  
## Coefficients: 
##                         Estimate Std. Error t value Pr(>|t|)     
## (Intercept)              7.56966    0.06361 118.994  < 2e-16 *** 
## marital_status divorced -0.78966    0.29810  -2.649  0.00814 **  
## marital_status single   -0.57286    0.10413  -5.501 4.27e-08 *** 
## marital_status widowed  -0.50299    0.15570  -3.231  0.00126 **  
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
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Categorical Predictors
✴ Regression coefficients for categorical predictors are 

interpreted relative to the ‘reference category’.

✴ Mathematically, makes no difference which value you 
choose as ‘reference category’. Sometimes, it makes 
sense to choose one for presentational purposes:

✴ e.g. if I’m interested in how unemployment affects 
people’s attitudes, I will be more interested in the 
coefficient for unemployed relative to employed 
rather than e.g. student or pensioner.  
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Goodness of Fit in Simple OLS

✴ How good is our model? 

✴ R2 (coefficient of determination) = measure of ‘fit’. The 
logic is comparing…

✴ Our best guess of  without the model:  (the mean).Y Ȳ

✴ Our best guess of  with the model:  (the fitted values).Y ̂Y
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Goodness of Fit in Simple OLS
✴ How far our predictions are from the observed s? Y

✴ Before fitting the line =∑ (Yi − Ȳi)2

✴ After fitting the line = ∑ (Yi − ̂Yi)2

✴
So, the R2 = 1 −

∑ (Yi − ̂Yi)2

∑ (Yi − Ȳi)2

✴ Interpretation: value between 0 and 1 that tells us the 
share of variance in  explained by the model.Y
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Goodness of Fit in Multiple OLS
✴ When you add variables, your model will get better at 

predicting outcomes within the sample.

✴ With  observation, we can have  binary variables, 
and we’ll get exact predictions of  for each observation.

n n − 1
Y

✴  and R2 will be 1. Perfect Fit. Hooray! ̂Y = Y

✴ This is obviously silly: 

✴ Our models are meant to simplify reality (parsimony).

✴ Also, we can’t make out-of-sample predictions. 
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Goodness of Fit in Multiple OLS

✴ Adjusted R2 penalises models with lots of predictors 
that explain little variation in :Y

 Adj. R2 = 1 −
(1 − R2)(N − 1)

N − p − 1

✴ where  = no. of predictors.p

✴ Interpret Adjusted R2 in multiple regression models. But 
maximising the R2 is not your main goal!



## ================================================================== 
##                                  Dependent variable:               
##                     ---------------------------------------------- 
##                                      life_satisf                   
##                               (1)                    (2)           
## ------------------------------------------------------------------ 
## age                          0.013                  0.013          
## income_decile                0.339                  0.336          
## female                       0.519                  0.528          
## religiosity                  0.094                  0.089          
## years_education             -0.006                  -0.007         
## star_signEarth                                      -0.009         
## star_signFire                                       0.295          
## star_signWater                                      -0.110         
## favourite_number                                    0.006          
## Intercept                    4.127                  4.095          
## ------------------------------------------------------------------ 
## Observations                  210                    210           
## R2                           0.214                  0.219          
## Adjusted R2                  0.195                  0.184          
## Residual Std. Error    1.983 (df = 204)        1.996 (df = 200)    
## F Statistic         11.123*** (df = 5; 204) 6.228*** (df = 9; 200) 
## ================================================================== 
## Note:                                  *p<0.1; **p<0.05; ***p<0.01 



Least Squares 
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‘BLUE’
✴ Gauss-Markov Theorem: OLS is the Best Linear Unbiased 

Estimator (BLUE) under six assumptions.

✴ Unbiased: OLS estimate will recover the population 
parameter in expectation (assumptions 1-4):

✴ Best: out of all the possible unbiased estimators of a linear 
relationship, OLS is the one with least variance: i.e. it 
works comparatively well even in small samples 
(assumptions 5-6, next week). 

E[ ̂β] = β
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Linearity
✴ The population regression model is linear in its 

parameters (“linear in the s”). β

✴ Remember: we don’t observe the population regression. 
We just assume that the relationships that generate our 
data are linear  regression is a model of reality. →

✴ If linear relationships cannot be assumed:

✴ Tricks to model non-linear relations in OLS (week 8).

✴ Use non-linear regression instead (beyond this course).



1. Linearity

2. Random Sampling

3. No Perfect Collinearity

4. Zero Conditional Mean (Exogeneity)

5. Constant variance of the error term (Homoskedasticity)

6. Normality of the Error Term
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Random Sampling

✴ Random sample: ( ) are sampled 
randomly from the population for . 

Yi, X1i, X2i . . . Xki
i = 1... i = N

✴ If sampling is non-random, our estimates will be 
biased, i.e. they will not recover the population 
parameters.

✴ Related problem: non-random missing data.



1. Linearity

2. Random Sampling

3. No Perfect Collinearity

4. Zero Conditional Mean (Exogeneity)

5. Constant variance of the error term (Homoskedasticity)

6. Normality of the Error Term
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No Perfect Collinearity
✴ None of the independent variables is constant, and there are no exact 

linear relationships among the independent variables. 

✴ If a variable is a constant: infinite regression lines solve OLS; impossible to 
say how changes in  affect  because  doesn’t change.X Y X

✴ If two independent variables are a linear combination of each other: 
impossible to determine partial effects because  perfectly accounts for 
variation in , and vice versa.

X1
X2

✴ Age and Birth year in cross-sectional data:  
Age = Current Year  Birth Year.−

✴ Also the reason why we have  binary variables when we recode a 
categorical variable with  categories. For instance, Male (0-1) is a linear 
combination of Female (0-1): 
Male = 1(Female 1)

n − 1
n

− −
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Multicollinearity
✴ Multicollinearity: independent variables are very strongly, but 

not perfectly, correlated with each other.

✴ This makes for unstable estimates across iterated samples from 
the population, large S.E. and high p-values. 

✴ Not a violation of OLS assumptions. Also, less well-defined 
issue than perfect collinearity. How strong is ‘too strong’? 

✴ Diagnostic tool (VIF) in the lab. But you normally want to 
avoid to include covariates that are tightly correlated.

✴ Solutions: (1) increase the number of observations, (2) drop one 
of the variables affected, (3) Nothing. OLS is still BLUE.  
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Zero Conditional Mean (aka Exogeneity)
✴ The population error  has an expected value of zero 

(i.e. a mean across repeated samples) given any values 
of the s.

ϵ

X

✴ Unexplained component of , which is modelled as part 
of the error term , should be uncorrelated with the s. 

Y
ϵ X

✴ In other words: there are no un-modelled confounding 
variables. 

✴ By far the most important of OLS assumptions, and the 
one most often violated in practice.
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Zero Conditional Mean (aka Exogeneity)
✴ Trickiest violations:

✴ Omitted Variable Bias

✴ If there is a  correlated with  and with  but is not modelled, 
then  will be correlated with .

Z Y X
ϵ X

✴ Simultaneity/Reverse Causality

✴ If an independent variable  is jointly produced with :X Y

✴ Y = β0 + β1X + ϵ

✴ X = γ0 + γ1Y + υ

✴ X = γ0 + γ1(β0 + β1X + ϵ) + υ
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Zero Conditional Mean (aka Exogeneity)
✴ Endogeneity is not a problem when you can randomly assign the 

treatment (e.g. RCT). But no easy fixes in observational research. 

✴ Traditional approach: control for all things that could be related 
to both the independent variable of interest and the dependent 
variable.

✴ Design-based approaches: identify an ‘as-if-random’ . This is 
what a lot of contemporary trends in social science methods are 
all about (RDD, IV, D-in-D). Covered in Causal Inference course.

X

✴ Sensitivity analysis: accept possibility of omitted variables. How 
big should be the effect of the unobserved confounder(s) to make 
our relationship non-significant? Is it plausible?
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Zero Conditional Mean (aka Exogeneity)

✴ Another violation: un-modelled non-linearities.

✴ We’ll deal with some fixes for this next week 
(polynomial transformations). 
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X Y

Z

X Y

Z

Without controlling for 
, the ATE of  on  is 
negatively biased

Z X Y

+ +− −
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What Variables Should I Control For?

✴ Back-door criterion: Z is a ‘good control’ if 

1. Z is not a descendant of X (not post-treatment), and

2. Z blocks a path between X and Y that contains an arrow into X. 

✴ i.e. Z is a common cause of X and Y (a) or is the mediator of 
the relationship between an unobserved common cause U and 
either X or Y (respectively, b and c) . 

X Y

Z

X Y
Z

U

X Y
Z

U

(a) (b) (c)
✴ Adapted from Cinelli et al (2022)
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What Variables Should I Not Control For?
✴ If Z descends from of X (post-treatment variable): bad idea.

✴ These can: (1) block the causal path  (d), (2) are 
effects of the outcome (e), or (3) open a backdoor path to a 
previously unbiased causal path (f, g and h).

X → Y

✴ Adapted from Cinelli et al (2022)
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✴ Usually pre-treatment variables 

are good (a, b and c) or neutral (  
and j).

i

✴ But in presence of unobserved 
confounders, ‘pointless’ control 
can make existing bias worse (k).

✴ Also, they can be a problem if 
they open a backdoor path (l, 
collider bias). 

✴ Adapted from Cinelli et al (2022)
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Control for all pre-treatment variables?
✴ Usually pre-treatment variables 

are good (a, b and c) or neutral (  
and j).

i

✴ But in presence of unobserved 
confounders, ‘pointless’ control 
can make existing bias worse (k).

✴ Also, they can be a problem if 
they open a backdoor path (l, 
collider bias). 

✴ Bottom line: theory should 
inform your choice of controls, 
not data availability. 

✴ Adapted from Cinelli et al (2022)
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Wrapping Up
✴ Linear regression estimates conditional relationships 

that take into account how many independent 
variables relate to each other and to the outcome.

✴ A flexible and powerful method, but not magic: 
strong assumptions are required. Most notably, that 
there are no unobserved confounders.

✴ Next week: derive measures of uncertainty of sample 
estimates, and test hypotheses about the 
relationships existing in the population.



Thank you for your kind 
attention!  

Leonardo Carella 
leonardo.carella@nuffield.ox.ac.uk


