
Interactions
Introduction to Statistics



The Plan for Today



The Plan for Today

✴ Heterogeneous Treatment Effects 



The Plan for Today

✴ Heterogeneous Treatment Effects 

✴ Intuition: what’s the effect of parenthood on earnings? Well, 
depends.



The Plan for Today

✴ Heterogeneous Treatment Effects 

✴ Intuition: what’s the effect of parenthood on earnings? Well, 
depends.



The Plan for Today

✴ Heterogeneous Treatment Effects 

✴ Intuition: what’s the effect of parenthood on earnings? Well, 
depends.



The Plan for Today

✴ Heterogeneous Treatment Effects 

✴ Intuition: what’s the effect of parenthood on earnings? Well, 
depends.

✴ Modelling strategy: interactions 



The Plan for Today

✴ Heterogeneous Treatment Effects 

✴ Intuition: what’s the effect of parenthood on earnings? Well, 
depends.

✴ Modelling strategy: interactions 

✴ Non-linearities 



The Plan for Today

✴ Heterogeneous Treatment Effects 

✴ Intuition: what’s the effect of parenthood on earnings? Well, 
depends.

✴ Modelling strategy: interactions 

✴ Non-linearities 

✴ Intuition: does money buy you happiness? Well, depends.



The Plan for Today

✴ Heterogeneous Treatment Effects 

✴ Intuition: what’s the effect of parenthood on earnings? Well, 
depends.

✴ Modelling strategy: interactions 

✴ Non-linearities 

✴ Intuition: does money buy you happiness? Well, depends.



The Plan for Today

✴ Heterogeneous Treatment Effects 

✴ Intuition: what’s the effect of parenthood on earnings? Well, 
depends.

✴ Modelling strategy: interactions 

✴ Non-linearities 

✴ Intuition: does money buy you happiness? Well, depends.



The Plan for Today

✴ Heterogeneous Treatment Effects 

✴ Intuition: what’s the effect of parenthood on earnings? Well, 
depends.

✴ Modelling strategy: interactions 

✴ Non-linearities 

✴ Intuition: does money buy you happiness? Well, depends.

✴ Modelling strategy: polynomial terms + log transformations
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Recap: Multiple Linear Regression
✴ The coefficients returned by a multiple linear regression represent 

the expected change in  associated with a one-unit increase in , 
holding all other covariates constant. 

Y X

✴ When a variable is nominal, each category will have its own 
coefficient, which refers to the expected difference in the outcome 
between that category and the ‘reference group’.

✴ Standard errors represent the uncertainty of the coefficient estimate. 
P-value summarise our evidence against the null that the coefficient 
is zero in the population. 

✴ Unbiased estimation and inference are only valid under some heroic 
assumptions. Most significantly: exogeneity. 
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Example
✴ Are graduates more worried about climate change?

✴ Climate Worry = α + β Degree + ϵ

✴ What’s a possible confounder? 

✴ Ideology? Left-wingers are more likely to go to university, 
and being left-wing makes you worry about climate. 

✴ Ideology may be partly endogenous to education, but for 
now let’s make peace with that, and fit:

✴ Climate Worry = α + β1 Degree + β2 Left + ϵ



Example: Regression Table 
=============================================== 

                        Dependent variable:     
                    --------------------------- 

                              wrclmch           
----------------------------------------------- 

educationdegree              0.275***           
                              (0.049)           

                                                
ideologyleft                 0.235***           
                              (0.049)           

                                                
Constant                     2.712***           
                              (0.044)           

                                                
----------------------------------------------- 

Observations                   1,699            
R2                             0.031            
Adjusted R2                    0.030            

Residual Std. Error      0.923 (df = 1696)      
F Statistic          27.511*** (df = 2; 1696)   

=============================================== 
Note:               *p<0.1; **p<0.05; ***p<0.01
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Solution: Interaction Term
 Climate Worry = α + β1 Degree + β2 Left +β3(Degree × Left) + ϵ

Degree = 0 Degree = 1 

Left = 0

Left = 1

Dependent variable:

Climate Worry (1–5)

Intercept 2.793*** (0.05)

Degree —0.012 (0.09)

Left 0.121** (0.06)

Degree × Left 0.398*** (0.11)

✴ If Degree = 0 and Left = 0, then 

̂Y = α + β1(1) + β2(1) + β3(1 × 1) = α + β1 + β2 + β3

2.793 2.781

2.914 3.312
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Interaction Terms in R
Call: 
lm(formula = wrclmch ~ education + ideology + education * ideology,  
    data = ess) 

Residuals: 
     Min       1Q   Median       3Q      Max  
-2.30028 -0.79261  0.08619  0.21898  2.21898  

Coefficients: 
                             Estimate Std. Error t value Pr(>|t|)     
(Intercept)                   2.79261    0.04900  56.997  < 2e-16 *** 
educationdegree              -0.01159    0.09257  -0.125  0.90036     
ideologyleft                  0.12120    0.05829   2.079  0.03776 *   
educationdegree:ideologyleft  0.39805    0.10906   3.650  0.00027 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.9192 on 1695 degrees of freedom 
  (260 observations deleted due to missingness) 
Multiple R-squared:  0.03898, Adjusted R-squared:  0.03727  
F-statistic: 22.91 on 3 and 1695 DF,  p-value: 1.533e-14



Interaction Terms in R



Interaction Terms in R
✴ Note,  in R you will get the same result if you run: 



Interaction Terms in R
✴ Note,  in R you will get the same result if you run: 

lm(wrclmch ~ education + ideology + education*ideology, data = ess) 

lm(wrclmch ~ education*ideology, data = ess)



Interaction Terms in R
✴ Note,  in R you will get the same result if you run: 

✴ This is a really good feature of lm(). Whenever you have 
interaction terms, you always want to control for the parent 
terms (education and ideology) as well as the interaction term. 

lm(wrclmch ~ education + ideology + education*ideology, data = ess) 

lm(wrclmch ~ education*ideology, data = ess)



Interaction Terms in R
✴ Note,  in R you will get the same result if you run: 

✴ This is a really good feature of lm(). Whenever you have 
interaction terms, you always want to control for the parent 
terms (education and ideology) as well as the interaction term. 

✴ There is a way of telling R to include only the interaction 
term (education  ideology), but it’s best you don’t know 
because this is wrong 99% of the times.

×

lm(wrclmch ~ education + ideology + education*ideology, data = ess) 

lm(wrclmch ~ education*ideology, data = ess)
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Interpreting Interaction Terms
✴ The coefficient for the interaction 

term represents the difference in 
the effect of ‘Degree’ as we move 
from Left = 0 to Left = 1. 

✴ Statistical significance (p-value) of 
the interaction tests against the 
null that the effect of the treatment 
is the same across subgroups. 

✴ Here: large and significant — we 
do have an important interaction. 

Dependent variable:

Climate Worry (1–5)

Intercept 2.793*** (0.05)

Degree —0.012 (0.09)

Left 0.121** (0.06)

Degree × Left 0.398*** (0.11)
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Categorical Moderators with More Levels

✴ What about the Centrists? Recode Ideology as a three-
category variable. Now, the model is:

✴   
 

Climate Worry = α + β1 Degree + β2 Left + β3 Centrist +
β4 (Degree × Left) +β5 (Degree × Centrist) + ϵ

✴ In R, just pass the categorical variable:

lm(wrclmch ~ education + ideo_group + education*ideo_group, data = ess) 

# or equivalently 

lm(wrclmch ~ education*ideo_group, data = ess) 



Categorical Moderators with More Levels
Dependent variable:

Climate Worry (1–5)
Intercept 2.770*** (0.061)
Degree —0.155 (0.120)
Centrist 0.075 (0.069)
Left 0.382***(0.091)
Degree × Centrist 0.468*** (0.136)
Degree × Left 0.470***(0.148)

Observations 1,699
Adjusted R2 0.052

Note: *p<0.1; **p<0.05; ***p<0.01
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Continuous Moderators
✴ What if we want to measure ideology with a 0-10 scale?

 Worry = α + β1Degree + β2R-L Scale +β3(Degree × R-L Scale) + ϵ

✴  is the estimate for the effect of ‘Degree’ on ‘Worry’ when ‘R-L 
Scale’ is zero (i.e. for the most right-wing).
β1

✴  is the predicted change in ‘Worry’ associated with of a one-
unit increase in ‘R-L Scale’ when ‘Degree’ is zero (i.e. for non-
graduates).

β2

✴  is tricky:  it’s the change in the effect of ‘Degree’ on ‘Worry’ as 
we increase the value of ‘L-R Scale’ by one unit. Easier to 
interpret significance and direction, use plots to show effect size.

β3
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   +  Worry = α + β1 Degree + β2R-L Scale β3 (R-L Scale × Degree) + ϵ
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Continuous Moderators

Dependent variable:

Climate Worry (1–5)

Intercept

Degree

R-L Scale

Degree × R-L Scale

 = effect of ‘Degree’ on 
‘Worry’ when ‘R-L Scale’ is zero
β1

 = effect of a one-unit increase 
in ‘R-L Scale’ on ‘Worry’ when 
‘Degree’ is zero

β2

   +  Worry = α + β1 Degree + β2R-L Scale β3 (R-L Scale × Degree) + ϵ
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Continuous Moderators

Dependent variable:

Climate Worry (1–5)

Intercept

Degree

R-L Scale

Degree × R-L Scale

 = effect of ‘Degree’ on 
‘Worry’ when ‘R-L Scale’ is zero
β1

 = effect of a one-unit increase 
in ‘R-L Scale’ on ‘Worry’ when 
‘Degree’ is zero

β2

 = change in the effect of 
‘Degree’ on ‘Worry’ as we 
increase the value of ‘L-R Scale’ 
by one unit.

β3

   +  Worry = α + β1 Degree + β2R-L Scale β3 (R-L Scale × Degree) + ϵ

2.544*** (0.075)

—0.116 (0.142)

0.068***(0.014)

0.068***(0.025)
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Visualising Continuous Moderators (1)
✴ Use predicted values: pick some representative values of the 

moderator and show predicted values of  across treatment conditions.Y

✴ Some options:

✴ Minimum and 
Maximum value.

✴ Quartiles of the 
distribution. 

✴ Mean plus and 
minus one std. 
deviation.
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Continuous Treatment and Moderator

✴ What if we want to measure education as an interval 
variable? For instance, ‘years of education’. Same set-up:

 Worry = α + β1EduYears + β2R-L Scale
+β3(EduYears × R-L Scale) + ϵ

✴ Both linear coefficients refer to effect of a one-unit change. 

✴ The interaction term’s coefficient is the estimated change 
in the effect of one year of education on Climate Worry, 
associated with a one-point increase in the R-L scale. 
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Dependent variable:

Climate Worry (1–5)

Intercept

Edu Years

R-L Scale

Edu Years × R-L Scale
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Continuous Moderators

Dependent variable:

Climate Worry (1–5)

Intercept

Edu Years

R-L Scale

Edu Years × R-L Scale

 = effect of one additional Year 
of Education when ‘R-L Scale’ is 
zero

β1

  +  Worry = α + β1EduYears + β2R-L Scale
β3(R-L Scale × EduYears) + ϵ
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Continuous Moderators

Dependent variable:

Climate Worry (1–5)

Intercept

Edu Years

R-L Scale

Edu Years × R-L Scale

 = effect of one additional Year 
of Education when ‘R-L Scale’ is 
zero

β1

 = effect of a one-point 
increase in ‘R-L Scale’ on ‘Worry’ 
when Years of Education is zero

β2

 = change in the effect of one 
additional Year of Education on 
‘Worry’ as we increase the value 
of ‘L-R Scale’ by one point.

β3

  +  Worry = α + β1EduYears + β2R-L Scale
β3(R-L Scale × EduYears) + ϵ

2.622*** (0.246)

—0.008 (0.018)

—0.018(0.045)

0.008***(0.003)
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✴ Always include both the ‘parent’ terms in a model with 

an interaction. lm()forces you to do that, thankfully.

✴ It follows that moderators appear in your formula as 
covariates: therefore, for causal interpretation, you 
should use variables that are plausibly pre-treatment.

✴ Software and math do not distinguish between 
treatment and moderator: the models we’ve just seen 
could be just as good to get at the effect of ideology on 
climate worry, conditional on education.

✴ It’s up to you to interpret things correctly. 
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Interaction Terms: Handle with Care
✴ You should have a strong theoretical reason to use an 

interaction term. Don’t be this person:

• “I spent a year collecting all these data and I got a null 
result. Maybe the treatment works differently for men and 
women. Let’s try adding an interaction for gender.”

• “Nothing. Maybe it’s race? Nope. Hair colour? Nada. 
Maybe it’s a triple interaction — treatment  race  
gender? Maybe the treatment only works for people born 
in odd years.” 

× ×

✴ Potentially infinite combinations of interaction terms. You 
will get ‘lucky’ and find something significant at some point. 
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✴ Temptation for ‘fishing’ with interactions is particularly 

strong also because interactions tend to be noisy. 

✴ Our main effects are already noisy, because they’re 
estimated with uncertainty. 

✴ Interactions estimate a difference between two noisy 
things. So they’re even noisier. Surprisingly big effects 
could pop up because of a few outliers. 

✴ You need very large sample sizes to estimate an interaction 
effect precisely (16  larger than for a main effect).×
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✴ More on pitfalls of interactions: 

✴ Brambor, T., Clark, W., and Golder, M. (2006) “Understanding 
interaction models: Improving empirical analyses.” Political 
Analysis 14(1), 63-82.

✴ Hainmueller, J., Mummolo, J., & Xu, Y. (2019). “How much should 
we trust estimates from multiplicative interaction models? Simple 
tools to improve empirical practice.” Political Analysis, 27(2), 
163-192.

✴ Gelman, A. (2023) “You need 16 times the sample size to estimate 
an interaction than to estimate a main effect, explained”, blogpost 
in Statistical Modeling, Causal Inference, and Social Science. 
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Dealing with Non-Linearities
✴ Polynomial terms (main focus today). Introducing as 

regressors a variable and powers of the same variable (usually: 
squared, but you can add cubed, fourth power etc.).

✴ Y = α + β1X + β2X2 + β3X3 + ϵ

✴ Variable transformations. Commonly, taking the natural 
logarithm of the variables to reduce their skew.

✴  Y = α + β log(X) + ϵ

✴ Both approaches are consistent with linearity assumptions: 
regression are still ‘linear in the s’.β
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✴ You might remember from high-school calculus the 

formula for a parabola: y = ax2 + bx + c

✴ A regression curve with the second-order polynomial of 
 has the same functional form: . X ̂Y = α̂ + ̂β1X + ̂β2X2

✴ Characteristics of a parabolic curve:

✴ It is U-shaped (‘opening up’) if . It is n-shaped 
(‘opening down’) if . 

β2 > 0
β2 < 0

✴
It has one bend, known as its vertex, given by −

β1

2β2



Lorem Ipsum Dolor
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Example
✴ Does democracy increase or decrease trust in government?

Democracy Govt. Trust

Freedom of Dissent, 
Polarisation

−

Accountability,
Responsiveness

++

+

✴ We gather data on Democracy (0-10 scale) from V-Dem, and 
on the average country-level Trust in Government (1 = none 
at all, 4 = a great deal) from the World Values Survey (WVS).
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β2

✴ Vertex: . This is 
where sign of the relationship 
changes — may fall outside 
the observed range of .

−β1/(2β2)
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constant, a one-unit increase in  is 
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X
β1 Y

✴ We can’t hold all else constant. If 
we increase , we also increase . X X2

✴ At each value  the predicted rate 
of change in  varies.

X
Y

✴ Polynomial variable coefficients  
and  mean little on their own, 
they must be interpreted together
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✴ In our model, 
−0.508 + 0.092 ×  Democracy

✴ Rate of change if Democracy = 1:

✴ −0.508 + 0.092 × 1 = − 0.416
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Second-Degree Polynomial: Coefficients
✴ Instantaneous rate of change, expressed 

by the derivative. The derivative of 
 in  is .̂Y = α + β1X + β2X2 X β1 + 2β2X

✴ In our model, 
−0.508 + 0.092 ×  Democracy

✴ Rate of change if Democracy = 1:

✴ −0.508 + 0.092 × 1 = − 0.416

✴ Rate of change in Democracy = 5:

✴ −0.508 + 0.092 × 5 = − 0.048

✴ Rate of change in Democracy = 8:

✴ , etc.−0.508 + 0.092 × 8 = + 0.228

Dependent variable:

Govt. Trust (1–4)

Intercept 3.337*** (0.152)

Democracy -0.508*** (0.076)

Democracy2 0.046*** (0.008)



Polynomial Terms in R 
> model1 <- lm(conf_goverment ~ democracy + I(democracy^2), data = qog) 
> stargazer(model1, type = "text", single.row = TRUE) 

=============================================== 
                        Dependent variable:     
                    --------------------------- 
                          conf_goverment        
----------------------------------------------- 
democracy                -0.508*** (0.076)      
I(democracy2)            0.046*** (0.008)       
Constant                 3.337*** (0.152)       
----------------------------------------------- 
Observations                    76              
R2                             0.417            
Adjusted R2                    0.401            
Residual Std. Error       0.366 (df = 73)       
F Statistic           26.076*** (df = 2; 73)    
=============================================== 
Note:               *p<0.1; **p<0.05; ***p<0.01
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Check if you understand

✴ Guo, G. (2009). China's local political budget cycles. American Journal of Political Science, 53(3), 621-632.

✴ How does a leader’s time in office affect spending in Chinese counties?
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Higher-Order Polynomials
✴ You can add higher-order terms ( , etc.) to model 

more complex non-linearities. In general, a polynomial 
of order  corresponds to a curve with  bends.

X3, X4

n n − 1

✴ You always want to include lower-order terms. E.g., if 
you want to have , you should also have  and .X3 X2 X

✴ If a quadratic term doesn’t improve the model, it’s 
unlikely a cubic term will do, and so on. In practice, it 
(almost) never makes sense to go beyond a cubic.

✴ Interpretation gets trickier. Use visualisation tools to get 
a sense of what you’re fitting. 
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Log-Transformations
✴ Useful when dealing with variables that are positive and 

right-skewed: 

✴ Income: lots of people around the median income, and a 
handful of mega-rich.

✴ Population: 50% of countries below 10m people ( ). 
Then there’s China and India, with 1bn people ( ). 

107

109

✴ GDP per capita: 80% of countries below $50k. Then, 
there’s Luxembourg, Singapore and Qatar (> $125k). 

✴ Linear relationships are unlikely with these variables as your 
predictors, outcomes or both. 
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Log-Transformations
✴ We can unskew these variables by taking their natural logarithm 

(notated as log, or ln). Reminder:

✴ If , then , where . log(a) = b eb = a e ≈ 2.71828

✴ How it works in practice:

✴ log(1) = 0

✴ log(10) ≈ 2.30

✴ log(100) ≈ 4.60

✴ log(1000) ≈ 6.91

✴ log(106) ≈ 13.82

✴ (Careful: you can’t take logs of zero or negative numbers!)
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✴ Famous paper: Acemoglu, D., Johnson, S., & Robinson, J. 
A. (2001). The colonial origins of comparative 
development: An empirical investigation. American 
Economic Review, 91(5), 1369-1401.

✴ Argument: Colonial powers set up extractive institutions 
in places where they faced high mortality rates (due to e.g. 
diseases). Where they can settle easily, they set up growth-
inducing institutions, like property rights. Long-run 
growth is thus related to initial conditions faced by settlers:

✴ GDP in 1995 = α + βSettler Mortality + ϵ
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Log-Transformations: Example
log(GDP in 1995) = α + β log(Settler Mortality) + ϵ
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Log Coefficients: Interpretation
✴ Interesting property of logarithms: can interpret the coefficients in terms 

of percentage change (an approximation, valid only for small increases). 

✴ Level-Level model Y = α + βX + ϵ

✴ One-unit change in    predicted to change by X → Y β

✴ Level-Log model Y = α + β log(X) + ϵ
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Log Coefficients: Interpretation
============================================================================ 
                                           Dependent variable:               
                              ---------------------------------------------- 
                                    GDP Per Capita      log(GDP per Capita) 
                                  (1)           (2)         (3)       (4)    
---------------------------------------------------------------------------- 
Settler Mortality               -3.862**                 -0.001***           
                                (1.637)                  (0.0003)            
                                                                             
log(Settler Mortality)                     -3,336.467***           -0.570*** 
                                             (485.995)              (0.078)  
                                                                             
Constant                      6,374.983*** 20,929.100*** 8.275***  10.700*** 
                               (866.715)    (2,337.663)   (0.136)   (0.374)  
                                                                             
---------------------------------------------------------------------------- 
Observations                       64           64          64        64     
R2                               0.082         0.432       0.169     0.464   
Adjusted R2                      0.068         0.423       0.156     0.456   
Model Type                    Level-Level    Level-Log   Log-Level  Log-Log   
============================================================================ 
Note:                                            *p<0.1; **p<0.05; ***p<0.01
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Wrap-Up: Non-Linearities
✴ Polynomial terms are a very flexible tool:

✴ Unlike logs, they can handle changes in effect direction 
over the range of the predictor, and negative values. 

✴ Including higher-order terms comes with the risk of 
overfitting. Theory should inform model specification.

✴ Log-transformation are used more narrowly:

✴ Non-linearities produced by skewed, positive variables.

✴ Assume proportional relationships: halving  has 
approximately the same effect size on  as doubling .

X
Y X



What Next?



What Next?
✴ Beyond OLS:

✴ Logistic regression and other non-linear models (multinomial, Poisson). If you need it 
in your work, I can send you a gentle introduction to logistic regression from last year.

✴ ML approaches (Lasso, Ridge, Decision Trees).



What Next?
✴ Beyond OLS:

✴ Logistic regression and other non-linear models (multinomial, Poisson). If you need it 
in your work, I can send you a gentle introduction to logistic regression from last year.

✴ ML approaches (Lasso, Ridge, Decision Trees).

✴ Specific ways of applying our workhorse models:

✴ Time series (panel data, survival analysis).

✴ Design-based approaches (matching, IV, RDDs).

✴ Experiments.



What Next?
✴ Beyond OLS:

✴ Logistic regression and other non-linear models (multinomial, Poisson). If you need it 
in your work, I can send you a gentle introduction to logistic regression from last year.

✴ ML approaches (Lasso, Ridge, Decision Trees).

✴ Specific ways of applying our workhorse models:

✴ Time series (panel data, survival analysis).

✴ Design-based approaches (matching, IV, RDDs).

✴ Experiments.

✴ Stats for goals other than inference:

✴ Measurement, classification, description of complex systems.



What Next?
✴ Beyond OLS:

✴ Logistic regression and other non-linear models (multinomial, Poisson). If you need it 
in your work, I can send you a gentle introduction to logistic regression from last year.

✴ ML approaches (Lasso, Ridge, Decision Trees).

✴ Specific ways of applying our workhorse models:

✴ Time series (panel data, survival analysis).

✴ Design-based approaches (matching, IV, RDDs).

✴ Experiments.

✴ Stats for goals other than inference:

✴ Measurement, classification, description of complex systems.

✴ Method options are sprawling and changing fast (AI is coming for all of us) — make your 
methods training fit your research needs, not the other way around. 
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What Next?
✴ Hilary Term 2025:

✴ Causal Inference — for a taste, see Imbens (forthcoming) “Causal Inference in the 
Social Sciences”, Annual Review of Statistics and Its Application. 

✴ Computational Methods (with Rachel!)

✴ Oxford Spring School 2025:

✴ Machine Learning

✴ Causal Inference (design-based, field experiments)

✴ Text Analysis

✴ Trinity Term 4-week courses. 

✴ Can’t get enough of it? Audit Intermediate Stats next year. Keep an eye out for method 
courses (ECPR, ICPSR, SICSS, EITM…)

✴ Long-term investment will involve some self-learning. 



How did you like the course?



Thank you for your kind 
attention!  

Leonardo Carella 
leonardo.carella@nuffield.ox.ac.uk


