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T'he Plan for Today

* Heterogeneous Treatment Effects

* Intuition: what's the effect of parenthood on earnings? Well,
depends.



Women's earnings drop significantly after having
a child. Men's don't.
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T'he Plan for Today

* Heterogeneous Treatment Effects

* Intuition: what's the effect of parenthood on earnings? Well,
depends.

* Modelling strategy: interactions
* Non-linearities

* Intuition: does money buy you happiness? Well, depends.



Average subjective happiness by equivalised household income percentile (after housing costs): UK, RF
2014-16
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T'he Plan for Today

* Heterogeneous Treatment Effects

* Intuition: what's the effect of parenthood on earnings? Well,
depends.

* Modelling strategy: interactions
* Non-linearities

* Intuition: does money buy you happiness? Well, depends.



T'he Plan for Today

* Heterogeneous Treatment Effects

* Intuition: what's the effect of parenthood on earnings? Well,
depends.

* Modelling strategy: interactions
* Non-linearities
* Intuition: does money buy you happiness? Well, depends.

* Modelling strategy: polynomial terms + log transformations
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Recap: Muluple Linear Regression

The coefficients returned by a multiple linear regression represent
the expected change in Y associated with a one-unit increase in X,
holding all other covariates constant.

When a variable is nominal, each category will have its own
coefficient, which refers to the expected difference in the outcome
between that category and the ‘reference group’.

Standard errors represent the uncertainty of the coefficient estimate.
P-value summarise our evidence against the null that the coefficient
is zero in the population.

Unbiased estimation and inference are only valid under some heroic
assumptions. Most significantly: exogeneity.
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Example

* Are graduates more worried about climate change?
* Climate Worry = a + # Degree + €
* What's a possible confounder?

* Ideology? Lett-wingers are more likely to go to university,
and being left-wing makes you worry about climate.

* Ideology may be partly endogenous to education, but for
now let’s make peace with that, and fit:

* Climate Worry = a + /| Degree + [, Lett + €



Example: Regression Table

wrclmch
educationdegree 0.275***
(0.049)
1ideoclogyleft 0.235%*%
(0.049)
Constant 2 o YL 2w w5 %
(0.044)
Observations 1,699
R2 0.031
Adjusted R2 0.030
Residual Std. Error 0.923 (df = 16906)
FF Statistic 27.511*** (df = 2; 1690)

Note: *p<0.1; **p<0.05; *»**p<0.01
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Example: Predicted Values Plot

Predicted Worry about Climate Change (1-5 scale)
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Solution: Interactuon Term

Climate Worry = a + f§; Degree + 3, Left +f;(Degree X Left) + €

Dependent variable:

Degree =0 Degree =1
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Climate Worry = a + f§; Degree + 3, Left +f;(Degree X Left) + €

Dependent variable:

Degree =0 Degree =1
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Solution: Interactuon Term

Climate Worry = a + f§; Degree + 3, Left +f;(Degree X Left) + €

Dependent variable:

Degree =0 Degree =1

Climate Worry (1-5)

Intercept 2..793* (0.05) 2 793 2 781
Degree —0.012 (0.09)
Left 0.121** (0.06)

2.914 3.312
Degree x Left 0.398*** (0.11)

* If Degree = 0 and Left = 0, then
Y=a+ D)+ + X1 =a+p +p,+ b



Solution: Interacuon Term
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Interaction Terms in R

Call:

Im(formula = wrclmch ~ education + ideology + education * ideology,
data = ess)

Residuals:

Min 10 Median 30 Max
-2.30028 -0.79261 0.08019 0.21898 2.21898

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.79201 0.04900 56.997 < 2e-1060 *x*x*
educationdegree -0.01159 0.09257 -0.125 0.90036
ideologyleft 0.12120 0.05829 2.079 0.03770 *
educationdegree:i1deologyleft 0.39805 0.10906 3.650 0.00027 **x*

Signif. codes: 0 ‘Y***’ (0,001 ‘x> 0.01 ‘*” 0.05 '." 0.1 Y " 1

Residual standard error: 0.9192 on 1695 degrees of freedom
(260 observations deleted due to missingness)

Multiple R-squared: 0.03898, Adjusted R-squared: 0.03727

F-statistic: 22.91 on 3 and 1695 DF, p-value: 1.533e-14
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Interaction Terms in R

* Note, in R you will get the same result if you run:

Im (wrclmch ~ education + ideology + education*ideology, data = ess)

Ilm(wrclmch ~ education*ideology, data = ess)

* This is a really good feature of 1m (). Whenever you have
interaction terms, you always want to control for the parent
terms (education and ideology) as well as the interaction term.

* There is a way of telling R to include only the interaction
term (education X ideology), but it’s best you don’t know
because this is wrong 99% of the times.
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Interpreting Interaction 1erms

* We call ‘Left’ the moderator,
because it moderates the effect of
our treatment (Degree).

* The coefficient for the treatment
(Degree) is the effect of the variable
when the moderator (Left) is zero.

* The coefficient for the moderator
(Left) is the effect of the variable
when the treatment (Degree) is zero.

Intercept
Degree
Left

Degree x Left

Dependent variable:
Climate Worry (1-5)

2.793*** (0.05)
—0.012 (0.09)
0.121** (0.06)
0.398" (0.11)



Interpreting Interaction 1erms
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Climate Worry (1-5)

Intercept 2.7937 (0.05)
Degree —0.012 (0.09)
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* The coefficient for the interaction

Dependent variable:

term represents the difference in

Climate Worry (1-5)
the effect of ‘Degree’ as we move

from Left = 0 to Left = 1. Sl 2129 (UL
Degree —0.012 (0.09)

* Statistical significance (p-value) of
Left 0.121** (0.06)

the interaction tests against the
null that the effect of the treatment
is the same across subgroups.

Degree x Left  0.398"* (0.11)



Interpreting Interaction 1erms

* The coefficient for the interaction

Dependent variable:

term represents the difference in

Climate Worry (1-5)
the effect of ‘Degree’ as we move

from Left =0 to Left =1. Intercept 2793 (0.05)

Degree —0.012 (0.09)

* Statistical significance (p-value) of
Left 0.121** (0.06)

the interaction tests against the
null that the effect of the treatment

is the same across subgroups.

Degree x Left  0.398"* (0.11)

* Here: large and significant — we
do have an important interaction.
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Categorical Moderators with More Levels

* What about the Centrists? Recode Ideology as a three-
category variable. Now, the model is:

* Climate Worry = a + | Degree + [, Left + [; Centrist +
P, (Degree X Left) +fs (Degree X Centrist) + ¢

* In R, just pass the categorical variable:

lm (wrclmch ~ education + ideo group + education*ideo group, data = ess)
# or equivalently

Ilm(wrclmch ~ education*ideo group, data = ess)



Categorical Moderators with More Levels

Intercept
Degree
Centrist
Left

Degree x Centrist

Degree x Left

Observations
Adjusted R2

Note:

Dependent variable:

Climate Worry (1-5)
2.7770"* (0.061)
—0.155 (0.120)

0.075 (0.069)
0.382**%(0.091)
0.468"* (0.136)
0.470"*(0.148)

1,699
0.052

*p<0.1; *p<0.05; ***p<0.01

Predicted Worry about
Climate Change (1-5 scale)
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Conunuous Moderators

* What if we want to measure ideology with a 0-10 scale?
Worry = a + f;Degree + ,R-L Scale + f3;(Degree X R-L Scale) + €

* B, is the estimate for the effect of ‘Degree” on “Worry” when “‘R-L
Scale’ is zero (i.e. for the most right-wing).

* [, is the predicted change in “Worry” associated with of a one-
unit increase in ‘R-L Scale” when ‘Degree’ is zero (i.e. for non-
graduates).

x [, is tricky: it’s the change in the effect of ‘Degree” on “Worry’ as
we increase the value of ‘L-R Scale’ by one unit. Easier to
interpret significance and direction, use plots to show effect size.
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Conunuous Moderators

Worry = a + f; Degree + [,R-L Scale + [; (R-L Scale X Degree) + €

Dependent variable:
Climate Worry (1-5)

Intercept 2.544%*% (0.075)

Degree
R-L Scale

Degree x R-L Scale



Conunuous Moderators

Worry = a + f; Degree + [,R-L Scale + [; (R-L Scale X Degree) + €

p, = etfect of ‘Degree’ on
‘Worry” when ‘R-L Scale’ is zero

Dependent variable:

Climate Worry (1-5)

Intercept 2.544%*% (0.075)
Degree —0.116 (0.142)
R-L Scale

Degree x R-L Scale



Conunuous Moderators

Worry = a + f; Degree + [,R-L Scale + [; (R-L Scale X Degree) + €

Dependent variable:
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in ‘R-L Scale” on “Worry” when T —0.116 (0.142)
‘Degree’ 1s zero

R-L Scale 0.068%*%(0.014)
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Conunuous Moderators

Worry = a + f; Degree + [,R-L Scale + f#; (R-L Scale X Degree) + €

Dependent variable:

p, = etfect of ‘Degree’ on

, , ) L. Climate Worry (1-5)
Worry” when ‘R-L Scale’ is zero

L Int t S44% (0,

», = effect of a one-unit increase D 224477 (0075)
in ‘R-L Scale” on “Worry” when T —0.116 (0.142)
‘Degree’ 1s zero

R-L Scale 0.068***(0.014)

f; = change in the effect of

‘Degree’ on “Worry’ as we Degree x R-L Scale_y, 0.068%#%(0.025)
increase the value of ‘L-R Scale’

by one unit.
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Visualising Continuous Moderators (1)

* Use predicted values: pick some representative values of the
moderator and show predicted values of Y across treatment conditions.

. Predicted Worry about Climate Change (1-5 scale)
* Some options:

* Minimum and
Maximum value.
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distribution.
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R-L Scale -@- 4 (first quartile) -@= 5 (median) =@ 6 (third quartile)



Visualising Continuous Moderators (1)

* Use predicted values: pick some representative values of the
moderator and show predicted values of Y across treatment conditions.

Predicted Worry about Climate Change (1-5 scale)

e
o1

* Some options:

* Minimum and

o
w

Maximum value.

| +

| .
.

* Mean plus and o degres dogres
. education
minus one std.
deviation.

* Quartiles of the
distribution.

N
©

How worried about climate change
w

R-L Scale - 3.2 (mean- 1sd) =@ 5.1 (mean) -@ 7 (mean + 1sd)
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Visualising Continuous Moderators (2)

* Plot the effect of the treatment (Y-axis) by the value of the moderator
(X-axis). This is variously known as a conditional/marginal effect plot.

Conditional Effect of Having Degree on
Climate Worry, Conditional On Right-Left Ideology

=
o

0.0

Effect of Degree on Climate Worry

0 1 2 3 4 5 6 7 8 9 10
Right-Left Ideology
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Continuous Treatment and Moderator

* What if we want to measure education as an interval
variable? For instance, ‘“years of education’. Same set-up:

Worry = a + f;EduYears + f,R-L Scale
Pz(EduYears X R-L Scale) + €

* Both linear coefficients refer to effect of a one-unit change.

* The interaction term’s coefficient is the estimated change
in the effect of one year of education on Climate Worry,
associated with a one-point increase in the R-L scale.
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Conunuous Moderators

Worry = a + fjEduYears + /,R-L Scale +
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Dependent variable:
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Intercept
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Conunuous Moderators

Worry = a + fjEduYears + /,R-L Scale +
P(R-L Scale X EduYears) + €
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Conunuous Moderators

Worry = a + f|EduYears + J)R-L Scale +
P(R-L Scale X EduYears) + €

Dependent variable:
P, = etfect of one additional Year
of Education when ‘R-L Scale’ is
Zero

Climate Worry (1-5)

Intercep 2.622%%% (0.246)

f, = effect of a one-point

increase in ‘R-L Scale’ on “Worry’ Jears —0.008(0.018)
when Years of Education is zero ¢ 1 gcale 0.018(0.045)

p; = change in the effect of one

o : Edu Years x R-L Scale 0.008***(0.003
additional Year of Education on //]‘ ( )

‘Worry’ as we increase the value
of ‘L-R Scale’ by one point.



Predicted Values Plot

Predicted Worry about Climate Change (1-5 scale)
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Conditional Effects Plot (aka Marginal Eftect Plot)

Effect of One Additional Year of Education On
Climate Worry, Conditional On Right-Left Ideology
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Interacuon Terms: Handle with Care

* Always include both the ‘parent’ terms in a model with

an interaction. 1m () forces you to do that, thankfully.

* It follows that moderators appear in your formula as
covariates: therefore, for causal interpretation, you
should use variables that are plausibly pre-treatment.

* Software and math do not distinguish between
treatment and moderator: the models we’ve just seen
could be just as good to get at the effect of ideology on
climate worry, conditional on education.

* It's up to you to interpret things correctly.
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Interacuon Terms: Handle with Care

* You should have a strong theoretical reason to use an
interaction term. Don’t be this person:

« “I spent a year collecting all these data and I got a null
result. Maybe the treatment works differently for men and
women. Let’s try adding an interaction for gender.”

« “Nothing. Maybe it’s race? Nope. Hair colour? Nada.

May
genc

oe it’s a triple interaction — treatment X race X

ler? Maybe the treatment only works for people born

in odd years.”

* Potentially infinite combinations of interaction terms. You
will get ‘lucky” and find something significant at some point.
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Interacuon Terms: Handle with Care

* Temptation for ‘fishing” with interactions is particularly
strong also because interactions tend to be noisy.

* Our main effects are already noisy, because they’re
estimated with uncertainty.

* Interactions estimate a difference between two noisy
things. So they’re even noisier. Surprisingly big effects
could pop up because of a few outliers.

* You need very large sample sizes to estimate an interaction
effect precisely (16X larger than for a main effect).
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Interacuon Terms: Handle with Care

* More on pitfalls of interactions:

* Brambor, T., Clark, W., and Golder, M. (2006) “Understanding
interaction models: Improving empirical analyses.” Political
Analysis 14(1), 63-82.

* Hainmueller, J., Mummolo, J., & Xu, Y. (2019). “How much should
we trust estimates from multiplicative interaction models? Simple

tools to improve empirical practice.” Political Analysis, 27(2),
163-192.

* Gelman, A. (2023) “You need 16 times the sample size to estimate
an interaction than to estimate a main effect, explained”, blogpost
in Statistical Modeling, Causal Inference, and Social Science.
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Check if you understand (1)

government) make people feel |

* Does ‘winning’ (i.e. voting for the party that forms the

nappier?

Random Intercept, Interaction

Winner

Corruption
Winner*Corruption
Nonvoter

Left-right self-placement
Constant

Variance components
Country

Individual

—2 log likelihood

N at Level 1

N at Level 2

101%%* (L021)
—079%*% (,029)
—.014%* (.007)
—.034** (.018)

018%** (.003)
3.166%** (.522)

018*** (.006)
435%** (.005)
26,133.8
12,996

16

Margit Tavits (2008) Representation, Corruption, and Subjective Well-Being, CPS.



Check if you understand (1)

* Does ‘winning’
(i.e. voting for
the party that
forms the
government)
make people
feel happier?

*  Margit Tavits (2008) Representation, Corruption, and Subjective Well-Being, CPS.

Marginal Effect of Winner on Subjective Well-Being at Different

Levels of Corruption, European Sample

Corruption

Marginal effect of Winner
95% CI

95% CI




Check if you understand (2)

* Does telling people their party is going to lose the next election

(threat treatment vs reassurance control) make them angrier?
Anger and Party

Threat
1 2

Partisan strength — .01 (.03) .01 (.03)
Partisan identity — —.07 (.07)
Party threat/reassurance .26 (.06)*** .03 (.08)
Partisan strength x threat/reassurance .10 (.04)** —.01 (.04)
Partisan identity x threat/reassurance - 44 (.09)***
Ideological issue intensity .06 (.05) .07 (.05)
Ideological intensity x threat/reassurance —.03 (.07) —.03 (.07)
Knowledge —.19 (.10)* —.19 (.09)**
Gender (male) — .04 (.02)** —.03 (.02)*
Education — .05 (.04) —.04 (.04)
Age (decades) .01 (.01) .00 (.01)
Constant A2 (A1)* 46 (L171)**
Adj. R? 0.22 0.24

N 1482 1482

Huddy, L., Mason, L., & Aarge, L. (2015). Expressive partisanship: Campaign involvement, political emotion, and partisan identity. APSR, 109(1), 1-17.



Check if you understand (2)

A. Blog Study: Anger

* Does telling -
people their
party is going &
to lose the s
next election §
(threat o
treatment vs %
reassurarnce %o -
control) make =
them o
angrier? T T e T e T T

.Partisah identit'y

Huddy, L., Mason, L., & Aarge, L. (2015). Expressive partisanship: Campaign involvement, political emotion, and partisan identity. APSR, 109(1), 1-17.
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Dealing with Non-Linearities

Polynomial terms (main focus today). Introducing as
regressors a variable and powers of the same variable (usually:
squared, but you can add cubed, fourth power etc.).

x* Y=a+ﬁ1X+,B2X2+ﬁ3X3+€

Variable transformations. Commonly, taking the natural
logarithm of the variables to reduce their skew.

x Y=a+ flog(X)+¢€

Both approaches are consistent with linearity assumptions:
regression are still ‘linear in the fs’.
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Second-Degree Polynomial

* You might remember from high-school calculus the
formula for a parabola: y = ax” + bx + ¢

* A regression curve with the second-order polynomial of
X has the same functional form: ¥ = & + , X + 3, X>.

* Characteristics of a parabolic curve:
* Itis U-shaped (‘opening up’) if 5, > 0. It is n-shaped
(‘opening down) if 5, < O.

4
)

. It has one bend, known as its vertex, given by



"Opening Down" "Opening Up"

a<0 a>0

The coefficient of x°determines
whether the parabola opens up or down
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Example

* Does democracy increase or decrease trust in government?

Freedom of Dissent,

/ Polarisation \;

Democracy Govt. Trust

+\Accountab1l1ty, / i

Responsiveness

* We gather data on Democracy (0-10 scale) from V-Dem, and

on the average country-level Trust in Government (1 = none
at all, 4 = a great deal) from the World Values Survey (WVS).



Govt. Trust = a + f;Democracy + €



Govt. Trust = a + f;Democracy + €

SHE

JHIN
AZE = i
BGD MMR T IDN
3.0 SGP
TRAZ
ETH
PAK eEE
THA NOR

NZL
TWN KOR. _SWE

i O

Confidence in Government, WVS
N
()]

CYP
NIC BOL ST
55 SRB — ARG ARA
LB MKD CoL CZE S\B&P
UKR
ROU
RO~ "
2 GTMEX Sl GRG
HRYUN
= YBeR
=5
0.0 25 5.0 7435,

Democracy Score (0-10), V-Dem



Govt. Trust = a + f;Democracy + €

Residuals of Govt. Trust ~ Democracy

Pearson residuals

democracy



Govt. Trust = a + f;Democracy + f,Democracy” + €
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Govt. Trust = a + f;Democracy + f,Democracy” + €

Residuals of Govt. Trust ~ Democracy + Democracy-squared
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* Sign of f,: if f, > 0, U-shaped

curve, if #, < 0, n-shaped

curve.

* Significance of p,: tests
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relations!
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1near.

* Vertex: —f3,/(2f3,). This is
where sign of the relationship
changes — may fall outside
the observed range of X.
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Second-Degree Polynomial: Coefficients

* Usual interpretation of effect size
doesn’t work: “holding all else
constant, a one-unit increase in X is
associated with a f#; increase in Y.”

* We can’t hold all else constant. If
we increase X, we also increase X?.

* At each value X the predicted rate
of change in Y varies.

Dependent variable:
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Second-Degree Polynomial: Coefficients

Usual interpretation of effect size Dependent variable:

doesn’t work: “holding all else Govt. Trust (1—4)
constant, a one-unit increase in X is

associated with a f3; increase in ¥.”  Intercept 3.337%%* (0.152)

We can’t hold all else constant. If Democracy  -0.508%** (0.076)
we increase X, we also increase X2. Democracy?  0.046%%* (0.008)

At each value X the predicted rate
of change in Y varies.

Polynomial variable coefficients f,
and f, mean little on their own,

they must be interpreted together
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Instantaneous rate of change, expressed Dependent variable:
by the derivative. The derivative of
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Polynomial Terms in R

> modell <- Im(conf goverment ~ democracy + I (democracy”2), data = gog)
> stargazer (modell, type = "text", single.row = TRUE)

democracy -0.508*** (0.070)

I (democracy?2) 0.040*** (0.008)
Constant 3.337*** (0.152)
Observations 76

R2 0.417
Adjusted R2 0.401
Residual Std. Error 0.366 (df = 73)

FF Statistic 26.076*** (df = 2; 73)

Note: *p<0.1; **p<0.05; ***p<0.01



Visualisation: Predicted Values Plot

Predicted Values of Country-Level Trust in Government (1-4)
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Visualisation: Conditional Ettect Plot

Conditional Effect of Democracy on
Trust in Government (Quadratic Model)
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Check if you understand

* How does a leader’s time in office affect spending in Chinese counties?

Dependent Variable: Annual Growth Rate sty foninbionsl bivstonn

of Expenditures Per Capita Coefficient

Explanatory Variables (Standard Error)

(Time in office)? —0.3946** —0.4860**
(0.1728) (0.2049)

Time in office 2.4793** 3.1624**
(1.0212) (1.2252)

Annual growth rate of revenues per capita 0.2493*** 0.2589***
(0.0142) (0.0166)

Annual growth rate of subsidies per capita 0.1411***

(0.0092)

* Guo, G. (2009). China's local political budget cycles. American Journal of Political Science, 53(3), 621-632.
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Higher-Order Polynomials

* You can add higher-order terms (X 3 X4 etc.) to model
more complex non-linearities. In general, a polynomial
of order n corresponds to a curve with n — 1 bends.

* You always want to include lower-order terms. E.g., it
you want to have X°, you should also have X* and X.

* If a quadratic term doesn’t improve the model, it’s
unlikely a cubic term will do, and so on. In practice, it
(almost) never makes sense to go beyond a cubic.

* Interpretation gets trickier. Use visualisation tools to get
a sense of what you’re fitting.
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To better visualize observed data, we also continually
update a curve-fitting exercise to summarize COVID-19's
observed trajectory. Particularly with irregular data, curve
fitting can improve data visualization. As shown, IHME's
mortality curves have matched the data fairly well.

United States Daily COVID-19 Deaths: Actual Data, IHME/UW Model

Projections, & Cubic Fit.
Updated today (5/5/20), data through yesterday (5/4/20).

== o|HME Projection (3/27) == o|HME Projection (4/5) == o|HME Projection (5/4) e oCubic Fit e/ ctual
Deaths per day
3,500
August 4, 2020
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,500 = -
% Cumulative Projected Deaths
2,000 Latest IHME Projection: 134,475
1,500
1,000
500 Sewao
- - e
g X T PP . L Y T

0
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Sources: Institute for Health Metrics and Evaluation (IHME); New York Times; CEA calculations.

3:35 PM - May 5, 2020 ©)
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Basic Covid Death scatterplot

6000
5000
4000
3000
2000
1000

..0.
0 00000000 0000000000°%,

19-Feb-20 29-Feb-20 10-Mar-20 20-Mar-20 30-Mar-20 9-Apr-20 19-Apr-20 29-Apr-20 9-May-20

A AR AN I A 4 | Ivlu’ e A A \."/



Higher-Order Polynomials: Handle with Care

Covid Death Scatterplot With Linear and Cubic Trendlines
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Log-Transformations

* Useful when dealing with variables that are positive and
right-skewed:

* Income: lots of people around the median income, and a
handful of mega-rich.

« Population: 50% of countries below 10m people (107).
Then there’s China and India, with 1bn people (10°).

* GDP per capita: 80% of countries below $50k. Then,
there’s Luxembourg, Singapore and Qatar (> $125k).

* Linear relationships are unlikely with these variables as your
predictors, outcomes or both.
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Log-Transformations

* We can unskew these variables by taking their natural logarithm
(notated as log, or In). Reminder:

« Iflog(a) = b, then e” = a, where e ~ 2.71828.
* How it works in practice:

* log(l) =0

* log(10) =~ 2.30

* log(100) =~ 4.60

* 1log(1000) =~ 6.91

« log(10°) ~ 13.82

* (Careful: you can’t take logs of zero or negative numbers!)
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A. (2001). The colonial origins of comparative
development: An empirical investigation. American

Economic Review, 91(5), 1369-1401.

* Argument: Colonial powers set up extractive institutions
in places where they faced high mortality rates (due to e.g.
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inducing institutions, like property rights. Long-run
growth is thus related to initial conditions faced by settlers:

* GDPin 1995 = a + fSettler Mortality + €



Log-Transformations: Example
GDP in 1995 = a + pSettler Mortality + €

USA
SGP
HKG
CAN
20000 AUS

NZL

10000

GDP per capita in 1994

-10000

0 1000 2000 3000
Annual Settler Deaths per 1000 Stable Settlers



Log-Transformations: Example

GDP in 1995 = a + S log(Settler Mortality) + €
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Log-Transformations: Example
log(GDP in 1995) = a + f log(Settler Mortality) + €
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Log Cocllicients: Interpretation

Interesting property of logarithms: can interpret the coefficients in terms
of percentage change (an approximation, valid only for small increases).

Level-Level model Y = a+ X + €

* One-unit change in X — Y predicted to change by f
Level-Log model Y = a + flog(X) + €

* 1% change in X — Y predicted to change by (/3/100)
Log-Level model log(Y) =a+ X + ¢

* One-unit change in X — Y predicted to change by # X 100%
Log-Log model log(Y) = a+ flog(X) + €

* 1% change in X — Y changes by %



Log Cocllicients: Interpretation

GDP Per Capita log (GDP per Capita)
(1) (2) (3) (4)
Settler Mortality -3.862*% -0.001**x*
(1.637) (0.0003)
log(Settler Mortality) -3,336.40677*** —0.570**x*
(485.995) (0.078)
Constant 6,374.983*** 20,929.100*** 8.275***x 10.700***
(866.715) (2,337.663) (0.136) (0.374)
Observations 64 64 64 64
R2 0.082 0.432 0.169 0.464
Adjusted RZ 0.068 0.423 0.156 0.456
Model Type Level-Level Level-LlLog Log-Level Log-Log

Note: *p<0.1; **p<0.05; ***p<0.01
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Wrap-Up: Non-Linearites

* Polynomial terms are a very flexible tool:

* Unlike logs, they can handle changes in effect direction
over the range of the predictor, and negative values.

* Including higher-order terms comes with the risk of
overfitting. Theory should inform model specification.

* Log-transformation are used more narrowly:
* Non-linearities produced by skewed, positive variables.

* Assume proportional relationships: halving X has
approximately the same effect size on Y as doubling X.
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What Next?

Beyond OLS:

* Logistic regression and other non-linear models (multinomial, Poisson). If you need it
in your work, I can send you a gentle introduction to logistic regression from last year.

* ML approaches (Lasso, Ridge, Decision Trees).
Specific ways of applying our workhorse models:
* Time series (panel data, survival analysis).
* Design-based approaches (matching, IV, RDDs).
* Experiments.
Stats for goals other than inference:
* Measurement, classification, description of complex systems.

Method options are sprawling and changing fast (Al is coming for all of us) — make your
methods training fit your research needs, not the other way around.



What Next?



What Next?

* Hilary Term 2025:

* Causal Inference — for a taste, see Imbens (forthcoming) “Causal Inference in the
Social Sciences”, Annual Review of Statistics and Its Application.

* Computational Methods (with Rachel!)



What Next?

* Hilary Term 2025:

* Causal Inference — for a taste, see Imbens (forthcoming) “Causal Inference in the
Social Sciences”, Annual Review of Statistics and Its Application.

* Computational Methods (with Rachel!)
* Oxford Spring School 2025:
* Machine Learning
* Causal Inference (design-based, field experiments)

* Text Analysis



What Next?

* Hilary Term 2025:

* Causal Inference — for a taste, see Imbens (forthcoming) “Causal Inference in the
Social Sciences”, Annual Review of Statistics and Its Application.

* Computational Methods (with Rachel!)
* Oxford Spring School 2025:
* Machine Learning
* Causal Inference (design-based, field experiments)
* Text Analysis

* Trinity Term 4-week courses.



*

oK

-3

What Next?

Hilary Term 2025:

* Causal Inference — for a taste, see Imbens (forthcoming) “Causal Inference in the
Social Sciences”, Annual Review of Statistics and Its Application.

* Computational Methods (with Rachel!)
Oxford Spring School 2025:
* Machine Learning
* Causal Inference (design-based, field experiments)
* Text Analysis
Trinity Term 4-week courses.

Can’t get enough of it? Audit Intermediate Stats next year. Keep an eye out for method
courses (ECPR, ICPSR, SICSS, EITM...)



*

oK

-3

What Next?

Hilary Term 2025:

* Causal Inference — for a taste, see Imbens (forthcoming) “Causal Inference in the
Social Sciences”, Annual Review of Statistics and Its Application.

* Computational Methods (with Rachel!)
Oxford Spring School 2025:
* Machine Learning
* Causal Inference (design-based, field experiments)
* Text Analysis
Trinity Term 4-week courses.

Can’t get enough of it? Audit Intermediate Stats next year. Keep an eye out for method
courses (ECPR, ICPSR, SICSS, EITM...)

Long-term investment will involve some self-learning.
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