Interactions

Introduction to Statistics

HIGHLY NON-LINEAR WORLD

* Heterogeneous Treatment Effects

* Intuition: what's the effect of parenthood on earnings? Well, *depends*.

Women's earnings drop significantly after having a child. Men's don't.

EARNINGS IMPACT

Source: "Children and gender inequality: Evidence from Denmark," National Bureau of Economic Research

* Heterogeneous Treatment Effects

* Intuition: what's the effect of parenthood on earnings? Well, *depends*.

- * Intuition: what's the effect of parenthood on earnings? Well, *depends*.
- * Modelling strategy: **interactions**

- * Intuition: what's the effect of parenthood on earnings? Well, *depends*.
- * Modelling strategy: **interactions**
- * Non-linearities

- * Intuition: what's the effect of parenthood on earnings? Well, *depends*.
- * Modelling strategy: **interactions**
- * Non-linearities
 - * Intuition: does money buy you happiness? Well, *depends*.

Average subjective happiness by equivalised household income percentile (after housing costs): UK,

the chart to percentile 100 on the far right. The lines are logarithmic lines of best fit. **Source:** RF analysis of DWP, *Family Resources Survey*; pooled data for 2014-15 to 2016-17 © Resolution Foundation 2019 resolutionfoundation.org

- * Intuition: what's the effect of parenthood on earnings? Well, *depends*.
- * Modelling strategy: **interactions**
- * Non-linearities
 - * Intuition: does money buy you happiness? Well, *depends*.

- * Intuition: what's the effect of parenthood on earnings? Well, *depends*.
- * Modelling strategy: **interactions**
- * Non-linearities
 - * Intuition: does money buy you happiness? Well, *depends*.
 - * Modelling strategy: **polynomial terms** + **log transformations**

* The coefficients returned by a multiple linear regression represent the expected change in *Y* associated with a **one-unit increase** in *X*, holding all other covariates constant.

- * The coefficients returned by a multiple linear regression represent the expected change in *Y* associated with a **one-unit increase** in *X*, holding all other covariates constant.
- * When a variable is nominal, each category will have its own coefficient, which refers to the **expected difference** in the outcome between that category and the 'reference group'.

- * The coefficients returned by a multiple linear regression represent the expected change in *Y* associated with a **one-unit increase** in *X*, holding all other covariates constant.
- * When a variable is nominal, each category will have its own coefficient, which refers to the **expected difference** in the outcome between that category and the 'reference group'.
- Standard errors represent the uncertainty of the coefficient estimate.
 P-value summarise our evidence against the null that the coefficient is zero in the population.

- * The coefficients returned by a multiple linear regression represent the expected change in *Y* associated with a **one-unit increase** in *X*, holding all other covariates constant.
- * When a variable is nominal, each category will have its own coefficient, which refers to the **expected difference** in the outcome between that category and the 'reference group'.
- * Standard errors represent the **uncertainty** of the coefficient estimate. P-value summarise our evidence against the null that the coefficient is zero in the population.
- * Unbiased estimation and inference are only valid under some heroic assumptions. Most significantly: **exogeneity**.

Interactions

* Are graduates more worried about climate change?

- * Are graduates more worried about climate change?
 - * Climate Worry = $\alpha + \beta$ Degree + ϵ

- * Are graduates more worried about climate change?
 - * Climate Worry = $\alpha + \beta$ Degree + ϵ
- * What's a possible confounder?

- * Are graduates more worried about climate change?
 - * Climate Worry = $\alpha + \beta$ Degree + ϵ
- * What's a possible confounder?
 - * **Ideology**? Left-wingers are more likely to go to university, and being left-wing makes you worry about climate.

- * Are graduates more worried about climate change?
 - * Climate Worry = $\alpha + \beta$ Degree + ϵ
- * What's a possible confounder?
 - * **Ideology**? Left-wingers are more likely to go to university, and being left-wing makes you worry about climate.
 - * Ideology may be partly endogenous to education, but for now let's make peace with that, and fit:

- * Are graduates more worried about climate change?
 - * Climate Worry = $\alpha + \beta$ Degree + ϵ
- * What's a possible confounder?
 - * **Ideology**? Left-wingers are more likely to go to university, and being left-wing makes you worry about climate.
 - * Ideology may be partly endogenous to education, but for now let's make peace with that, and fit:
 - * Climate Worry = $\alpha + \beta_1$ Degree + β_2 Left + ϵ

Example: Regression Table

	Dependent variable:
	wrclmch
educationdegree	0.275*** (0.049)
ideologyleft	0.235*** (0.049)
Constant	2.712*** (0.044)
Observations R2 Adjusted R2 Residual Std. Error F Statistic 2	1,699 0.031 0.030 0.923 (df = 1696) 27.511*** (df = 2; 1696)
======================================	<pre><====================================</pre>

education

Climate Worry = $\alpha + \beta_1$ Degree + β_2 Left + β_3 (Degree × Left) + ϵ

Climate Worry = $\alpha + \beta_1$ Degree + β_2 Left + β_3 (Degree × Left) + ϵ

Dependent variable:

	Climate Worry (1–5)
Intercept	2.793*** (0.05)
Degree	-0.012 (0.09)
Left	0.121** (0.06)
Degree × Left	0.398*** (0.11)

Climate Worry = $\alpha + \beta_1$ Degree + β_2 Left + β_3 (Degree × Left) + ϵ

Dependent variable:

	Climate Worry (1–5)		Degree = 0	Degree = 1
Intercept	2.793*** (0.05)	Left = 0		
Degree	-0.012 (0.09)	Lett = 0		
Left	0.121** (0.06)	I oft – 1		
Degree × Left	0.398*** (0.11)	Lett – 1		

Climate Worry = $\alpha + \beta_1$ Degree + β_2 Left + β_3 (Degree × Left) + ϵ

Dependent variable:

	Climate Worry (1–5)		Degree = 0	Degree = 1
Intercept	2.793*** (0.05)	Left = 0	2.793	
Degree	-0.012 (0.09)			
Left	0.121** (0.06)	Left = 1		
Degree × Left	0.398*** (0.11)			

* If Degree = 0 and Left = 0, then

 $\hat{Y} = \alpha + \beta_1(0) + \beta_2(0) + \beta_3(0 \times 0) = \alpha$

Climate Worry = $\alpha + \beta_1$ Degree + β_2 Left + β_3 (Degree × Left) + ϵ

Dependent variable:

	Climate Worry (1–5)		Degree = 0	Degree = 1
Intercept	2.793*** (0.05)	Left = 0	2.793	
Degree	-0.012 (0.09)			
Left	0.121** (0.06)	Left = 1		
Degree × Left	0.398*** (0.11)			
Climate Worry = $\alpha + \beta_1$ Degree + β_2 Left + β_3 (Degree × Left) + ϵ

Dependent variable:

	Climate Worry (1–5)		Degree = 0	Degree = 1
Intercept	2.793*** (0.05)	Left = 0	2.793	2.781
Degree	-0.012 (0.09)			
Left	0.121** (0.06)	Left = 1		
Degree × Left	0.398*** (0.11)			

* If Degree = 1 and Left = 0, then

 $\hat{Y} = \alpha + \beta_1(1) + \beta_2(0) + \beta_3(1 \times 0) = \alpha + \beta_1$

Climate Worry = $\alpha + \beta_1$ Degree + β_2 Left + β_3 (Degree × Left) + ϵ

	Climate Worry (1–5)		Degree = 0	Degree = 1
Intercept	2.793*** (0.05)	Left = 0	2.793	2.781
Degree	-0.012 (0.09)			
Left	0.121** (0.06)	Left = 1		
Degree × Left	0.398*** (0.11)			

Climate Worry = $\alpha + \beta_1$ Degree + β_2 Left + β_3 (Degree × Left) + ϵ

Dependent variable:

	Climate Worry (1–5)		Degree = 0	Degree = 1
Intercept	2.793*** (0.05)	Left = 0	2.793	2.781
Degree	-0.012 (0.09)			
Left	0.121** (0.06)	Left = 1	2.914	
Degree × Left	0.398*** (0.11)			

* If Degree = 0 and Left = 1, then

 $\hat{Y} = \alpha + \beta_1(0) + \beta_2(1) + \beta_3(0 \times 1) = \alpha + \beta_2$

Climate Worry = $\alpha + \beta_1$ Degree + β_2 Left + β_3 (Degree × Left) + ϵ

	Climate Worry (1–5)		Degree = 0	Degree = 1
Intercept	2.793*** (0.05)	Left = 0	2.793	2.781
Degree	-0.012 (0.09)			
Left	0.121** (0.06)	Left = 1	2.914	
Degree × Left	0.398*** (0.11)			

Climate Worry = $\alpha + \beta_1$ Degree + β_2 Left + β_3 (Degree × Left) + ϵ

Dependent variable:

	Climate Worry (1–5)		Degree = 0	Degree = 1
Intercept	2.793*** (0.05)	Left = 0	2.793	2.781
Degree	-0.012 (0.09)			
Left	0.121** (0.06)	Left = 1	2.914	3.312
Degree × Left	0.398*** (0.11)			

* If Degree = 0 and Left = 0, then

 $\hat{Y} = \alpha + \beta_1(1) + \beta_2(1) + \beta_3(1 \times 1) = \alpha + \beta_1 + \beta_2 + \beta_3$

Predicted Worry about Climate Change (1-5 scale)


```
Call:
lm(formula = wrclmch ~ education + ideology + education * ideology,
   data = ess)
Residuals:
    Min 10 Median 30
                                      Max
-2.30028 -0.79261 0.08619 0.21898 2.21898
Coefficients:
                           Estimate Std. Error t value Pr(>|t|)
                           2.79261 0.04900 56.997 < 2e-16 ***
(Intercept)
                           -0.01159 0.09257 -0.125 0.90036
educationdegree
                           0.12120 0.05829 2.079 0.03776 *
ideologyleft
                                      0.10906 3.650
educationdegree:ideologyleft 0.39805
                                                       0.00027
                                                              * * *
               0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 `' 1
Signif. codes:
Residual standard error: 0.9192 on 1695 degrees of freedom
  (260 observations deleted due to missingness)
Multiple R-squared: 0.03898, Adjusted R-squared: 0.03727
F-statistic: 22.91 on 3 and 1695 DF, p-value: 1.533e-14
```

* Note, in R you will get the same result if you run:

* Note, in R you will get the same result if you run:

lm(wrclmch ~ education + ideology + education*ideology, data = ess)

lm(wrclmch ~ education*ideology, data = ess)

* Note, in R you will get the same result if you run:

lm(wrclmch ~ education + ideology + education*ideology, data = ess)
lm(wrclmch ~ education*ideology, data = ess)

* This is a really good feature of lm(). Whenever you have interaction terms, you always want to control for the parent terms (*education* and *ideology*) as well as the interaction term.

* Note, in R you will get the same result if you run:

lm(wrclmch ~ education + ideology + education*ideology, data = ess)
lm(wrclmch ~ education*ideology, data = ess)

- * This is a really good feature of lm(). Whenever you have interaction terms, you always want to control for the parent terms (*education* and *ideology*) as well as the interaction term.
- There is a way of telling R to include only the interaction term (*education* × *ideology*), but it's best you don't know because this is wrong 99% of the times.

	Climate Worry (1–5)
Intercept	2.793*** (0.05)
Degree	-0.012 (0.09)
Left	0.121** (0.06)
Degree × Left	0.398*** (0.11)

* We call 'Left' the moderator,
because it moderates the effect of
our treatment (Degree).

	Climate Worry (1–5)
Intercept	2.793*** (0.05)
Degree	-0.012 (0.09)
Left	0.121** (0.06)
Degree × Left	0.398*** (0.11)

- * We call 'Left' the moderator,
 because it moderates the effect of
 our treatment (Degree).
- * The coefficient for the treatment
 (Degree) is the effect of the variable
 when the moderator (Left) is zero.

	Climate Worry (1–5)
Intercept	2.793*** (0.05)
Degree	-0.012 (0.09)
Left	0.121** (0.06)
Degree × Left	0.398*** (0.11)

- We call 'Left' the moderator,
 because it moderates the effect of
 our treatment (Degree).
- The coefficient for the treatment
 (Degree) is the effect of the variable
 when the moderator (Left) is zero.
- The coefficient for the moderator
 (Left) is the effect of the variable
 when the treatment (Degree) is zero.

 Climate Worry (1–5)

 Intercept
 2.793*** (0.05)

 Degree
 -0.012 (0.09)

 Left
 0.121** (0.06)

 Degree × Left
 0.398*** (0.11)

	Climate Worry (1–5)
Intercept	2.793*** (0.05)
Degree	-0.012 (0.09)
Left	0.121** (0.06)
Degree × Left	0.398*** (0.11)

The coefficient for the interaction term represents the difference in the effect of 'Degree' as we move from Left = 0 to Left = 1.

	Dependent variable:
	Climate Worry (1–5)
Intercept	2.793*** (0.05)
Degree	-0.012 (0.09)
Left	0.121** (0.06)
Degree × Left	0.398*** (0.11)

- The coefficient for the interaction term represents the difference in the effect of 'Degree' as we move from Left = 0 to Left = 1.
- Statistical significance (*p*-value) of the interaction tests against the null that the effect of the treatment is the same across subgroups.

	Dependent variable:
	Climate Worry (1–5)
Intercept	2.793*** (0.05)
Degree	-0.012 (0.09)
Left	0.121** (0.06)
Degree × Left	0.398*** (0.11)

- The coefficient for the interaction term represents the difference in the effect of 'Degree' as we move from Left = 0 to Left = 1.
- Statistical significance (*p*-value) of the interaction tests against the null that the effect of the treatment is the same across subgroups.
- Here: large and significant we do have an important interaction.

	Dependent variable:
	Climate Worry (1–5)
Intercept	2.793*** (0.05)
Degree	-0.012 (0.09)
Left	0.121** (0.06)
Degree × Left	0.398*** (0.11)

* What about the Centrists? Recode Ideology as a **threecategory** variable. Now, the model is:

- * What about the Centrists? Recode Ideology as a **threecategory** variable. Now, the model is:
- * Climate Worry = $\alpha + \beta_1$ Degree + β_2 Left + β_3 Centrist + β_4 (Degree × Left) + β_5 (Degree × Centrist) + ϵ

- * What about the Centrists? Recode Ideology as a **threecategory** variable. Now, the model is:
- * Climate Worry = $\alpha + \beta_1$ Degree + β_2 Left + β_3 Centrist + β_4 (Degree × Left) + β_5 (Degree × Centrist) + ϵ
- * In R, just pass the categorical variable:

- * What about the Centrists? Recode Ideology as a **three**category variable. Now, the model is:
- * Climate Worry = $\alpha + \beta_1$ Degree + β_2 Left + β_3 Centrist + β_4 (Degree × Left) + β_5 (Degree × Centrist) + ϵ
- * In R, just pass the categorical variable:

```
lm(wrclmch ~ education + ideo group + education*ideo group, data = ess)
```

```
# or equivalently
```

```
lm(wrclmch ~ education*ideo_group, data = ess)
```


* What if we want to measure ideology with a 0-10 scale?

* What if we want to measure ideology with a 0-10 scale?

Worry = $\alpha + \beta_1$ Degree + β_2 R-L Scale + β_3 (Degree × R-L Scale) + ϵ

* What if we want to measure ideology with a 0-10 scale?

Worry = $\alpha + \beta_1$ Degree + β_2 R-L Scale + β_3 (Degree × R-L Scale) + ϵ

* β_1 is the estimate for the effect of 'Degree' on 'Worry' when 'R-L **Scale' is zero** (i.e. for the most right-wing).

* What if we want to measure ideology with a 0-10 scale?

Worry = $\alpha + \beta_1$ Degree + β_2 R-L Scale + β_3 (Degree × R-L Scale) + ϵ

- * β₁ is the estimate for the effect of 'Degree' on 'Worry' when 'R-L
 Scale' is zero (i.e. for the most right-wing).
- * β_2 is the predicted change in 'Worry' associated with of a **one-unit increase** in 'R-L Scale' when 'Degree' is zero (i.e. for non-graduates).

* What if we want to measure ideology with a 0-10 scale?

Worry = $\alpha + \beta_1$ Degree + β_2 R-L Scale + β_3 (Degree × R-L Scale) + ϵ

- * β₁ is the estimate for the effect of 'Degree' on 'Worry' when 'R-L
 Scale' is zero (i.e. for the most right-wing).
- * β_2 is the predicted change in 'Worry' associated with of a **one-unit increase** in 'R-L Scale' when 'Degree' is zero (i.e. for non-graduates).
- * β_3 is tricky: it's the change in the effect of 'Degree' on 'Worry' as **we increase the value of 'L-R Scale' by one unit**. Easier to interpret significance and direction, use plots to show effect size.

Worry = $\alpha + \beta_1$ Degree + β_2 R-L Scale + β_3 (R-L Scale × Degree) + ϵ

Worry = $\alpha + \beta_1$ Degree + β_2 R-L Scale + β_3 (R-L Scale × Degree) + ϵ

Dependent variable:

Climate Worry (1–5)

R-L Scale

Intercept

Degree

Degree × R-L Scale

Worry = $\alpha + \beta_1$ Degree + β_2 R-L Scale + β_3 (R-L Scale × Degree) + ϵ

	Climate Worry (1–5)
ntercept	2.544*** (0.075)
Degree	
R-L Scale	
Degree × R-L Scale	
Worry = $\alpha + \beta_1$ Degree + β_2 R-L Scale + β_3 (R-L Scale × Degree) + ϵ

Worry = $\alpha + \beta_1$ Degree + β_2 R-L Scale + β_3 (R-L Scale × Degree) + ϵ

Worry = $\alpha + \beta_1$ Degree + β_2 R-L Scale + β_3 (R-L Scale × Degree) + ϵ

 * Use predicted values: pick some representative values of the moderator and show predicted values of *Y* across treatment conditions.

- * Use predicted values: pick some representative values of the moderator and show predicted values of *Y* across treatment conditions.
- * Some options:

- * Use predicted values: pick some representative values of the moderator and show predicted values of *Y* across treatment conditions.
- * Some options:
 - * Minimum andMaximum value.

- * Use predicted values: pick some representative values of the **moderator** and show predicted values of *Y* across treatment conditions.
- Some options: *
 - Minimum and Maximum value.

Predicted Worry about Climate Change (1-5 scale)

- * Use predicted values: pick some representative values of the moderator and show predicted values of *Y* across treatment conditions.
- * Some options:
 - * Minimum and Maximum value.
 - * Quartiles of the distribution.
 - Mean *plus* and *minus* one std.
 deviation.

* Plot the effect of the treatment (Y-axis) by the value of the moderator (X-axis). This is variously known as a *conditional/marginal effect plot*.

* Plot the effect of the treatment (Y-axis) by the value of the moderator (X-axis). This is variously known as a *conditional/marginal effect plot*.

* What if we want to measure education as an interval variable? For instance, 'years of education'. Same set-up:

* What if we want to measure education as an interval variable? For instance, 'years of education'. Same set-up:

Worry = $\alpha + \beta_1$ EduYears + β_2 R-L Scale + β_3 (EduYears × R-L Scale) + ϵ

* What if we want to measure education as an interval variable? For instance, 'years of education'. Same set-up:

Worry = $\alpha + \beta_1$ EduYears + β_2 R-L Scale + β_3 (EduYears × R-L Scale) + ϵ

* Both linear coefficients refer to effect of a one-unit change.

* What if we want to measure education as an interval variable? For instance, 'years of education'. Same set-up:

Worry = $\alpha + \beta_1$ EduYears + β_2 R-L Scale + β_3 (EduYears × R-L Scale) + ϵ

- * Both linear coefficients refer to effect of a one-unit change.
- * The interaction term's coefficient is the estimated **change in the effect of one year of education** on Climate Worry, associated with a **one-point increase in the R-L scale**.

Worry = $\alpha + \beta_1$ EduYears + β_2 R-L Scale + β_3 (R-L Scale × EduYears) + ϵ

Worry = $\alpha + \beta_1$ EduYears + β_2 R-L Scale + β_3 (R-L Scale × EduYears) + ϵ

Dependent variable:

Climate Worry (1–5)

Intercept

Edu Years

R-L Scale

Edu Years × R-L Scale

Worry = $\alpha + \beta_1$ EduYears + β_2 R-L Scale + β_3 (R-L Scale × EduYears) + ϵ

Dependent variable:

Climate Worry (1–5)

Intercept

2.622*** (0.246)

Edu Years

R-L Scale

Edu Years × R-L Scale

Worry = $\alpha + \beta_1$ EduYears + β_2 R-L Scale + β_3 (R-L Scale × EduYears) + ϵ

Worry = $\alpha + \beta_1$ EduYears + β_2 R-L Scale + β_3 (R-L Scale × EduYears) + ϵ

Worry = $\alpha + \beta_1$ EduYears + β_2 R-L Scale + β_3 (R-L Scale × EduYears) + ϵ

Predicted Values Plot

Conditional Effects Plot (aka Marginal Effect Plot)

* Always include both the 'parent' terms in a model with an interaction. lm() forces you to do that, thankfully.

- * Always include both the 'parent' terms in a model with an interaction. lm() forces you to do that, thankfully.
- * It follows that moderators appear in your formula as covariates: therefore, for causal interpretation, you should **use variables that are plausibly pre-treatment**.

- * Always include both the 'parent' terms in a model with an interaction. lm() forces you to do that, thankfully.
- It follows that moderators appear in your formula as covariates: therefore, for causal interpretation, you should use variables that are plausibly pre-treatment.
- Software and math do not distinguish between treatment and moderator: the models we've just seen could be just as good to get at the effect of ideology on climate worry, conditional on education.

- * Always include both the 'parent' terms in a model with an interaction. lm() forces you to do that, thankfully.
- It follows that moderators appear in your formula as covariates: therefore, for causal interpretation, you should use variables that are plausibly pre-treatment.
- Software and math do not distinguish between treatment and moderator: the models we've just seen could be just as good to get at the effect of ideology on climate worry, conditional on education.
- * It's up to you to **interpret things correctly**.

* You should have a strong theoretical reason to use an interaction term. **Don't be this person**:

- * You should have a strong theoretical reason to use an interaction term. **Don't be this person**:
 - "I spent a year collecting all these data and I got a null result. Maybe the treatment works differently for men and women. Let's try adding an interaction for gender."

- * You should have a strong theoretical reason to use an interaction term. **Don't be this person**:
 - "I spent a year collecting all these data and I got a null result. Maybe the treatment works differently for men and women. Let's try adding an interaction for gender."
 - "Nothing. Maybe it's race? Nope. Hair colour? Nada. Maybe it's a triple interaction — treatment × race × gender? Maybe the treatment only works for people born in odd years."

- * You should have a strong theoretical reason to use an interaction term. **Don't be this person**:
 - "I spent a year collecting all these data and I got a null result. Maybe the treatment works differently for men and women. Let's try adding an interaction for gender."
 - "Nothing. Maybe it's race? Nope. Hair colour? Nada. Maybe it's a triple interaction — treatment × race × gender? Maybe the treatment only works for people born in odd years."
- * Potentially **infinite** combinations of interaction terms. You will get 'lucky' and find something significant at some point.
* Temptation for 'fishing' with interactions is particularly strong also because interactions tend to be **noisy**.

- * Temptation for 'fishing' with interactions is particularly strong also because interactions tend to be **noisy**.
- * Our main effects are already noisy, because they're estimated with uncertainty.

- * Temptation for 'fishing' with interactions is particularly strong also because interactions tend to be **noisy**.
- * Our main effects are already noisy, because they're estimated with uncertainty.
- Interactions estimate a difference between two noisy things. So they're even noisier. Surprisingly big effects could pop up because of a few outliers.

- * Temptation for 'fishing' with interactions is particularly strong also because interactions tend to be **noisy**.
- * Our main effects are already noisy, because they're estimated with uncertainty.
- Interactions estimate a difference between two noisy things. So they're even noisier. Surprisingly big effects could pop up because of a few outliers.
- * You need very large sample sizes to estimate an interaction effect precisely (16× larger than for a main effect).

* More on pitfalls of interactions:

- * More on pitfalls of interactions:
- * Brambor, T., Clark, W., and Golder, M. (2006) "Understanding interaction models: Improving empirical analyses." *Political Analysis* 14(1), 63-82.

- * More on pitfalls of interactions:
- * Brambor, T., Clark, W., and Golder, M. (2006) "Understanding interaction models: Improving empirical analyses." *Political Analysis* 14(1), 63-82.
- * Hainmueller, J., Mummolo, J., & Xu, Y. (2019). "How much should we trust estimates from multiplicative interaction models? Simple tools to improve empirical practice." *Political Analysis*, 27(2), 163-192.

- * More on pitfalls of interactions:
- * Brambor, T., Clark, W., and Golder, M. (2006) "Understanding interaction models: Improving empirical analyses." *Political Analysis* 14(1), 63-82.
- * Hainmueller, J., Mummolo, J., & Xu, Y. (2019). "How much should we trust estimates from multiplicative interaction models? Simple tools to improve empirical practice." *Political Analysis*, 27(2), 163-192.
- * Gelman, A. (2023) "You need 16 times the sample size to estimate an interaction than to estimate a main effect, explained", blogpost in *Statistical Modeling*, *Causal Inference*, and Social Science.

Check if you understand (1)

* Does 'winning' (i.e. voting for the party that forms the government) make people feel happier?

Random Intercept, Interaction

.101*** (.021)
079*** (.029)
014** (.007)
034** (.018)
.018*** (.003)
3.166*** (.522)
.018*** (.006)
.435*** (.005)
26,133.8
12,996
16

Margit Tavits (2008) Representation, Corruption, and Subjective Well-Being, CPS.

Check if you understand (1)

Does 'winning' (i.e. voting for the party that forms the government) make people feel happier? Marginal Effect of *Winner* on Subjective Well-Being at Different Levels of Corruption, European Sample

* Margit Tavits (2008) Representation, Corruption, and Subjective Well-Being, CPS.

Check if you understand (2)

* Does telling people their party is going to lose the next election (*threat* treatment vs *reassurance* control) make them angrier?

Anger and Party Threat 2 1 Partisan strength -.01 (.03) .01 (.03) Partisan identity -.07 (.07) .26 (.06)*** Party threat/reassurance .03 (.08) .10 (.04)** Partisan strength \times threat/reassurance -.01(.04)Partisan identity × threat/reassurance .44 (.09)*** Ideological issue intensity .06 (.05) .07 (.05) – .03 (.07) Ideological intensity × threat/reassurance -.03 (.07) Knowledge – .19 (.10)* -.19 (.09)** Gender (male) - .04 (.02)** -.03 (.02)* Education – .05 (.04) -.04 (.04) Age (decades) .01 (.01) .00 (.01) Constant .42 (.11)*** .46 (.11)*** Adj. R² 0.22 0.24 Ν 1482 1482

Huddy, L., Mason, L., & Aarøe, L. (2015). Expressive partisanship: Campaign involvement, political emotion, and partisan identity. APSR, 109(1), 1-17.

Check if you understand (2)

Does telling * people their party is going to lose the next election (threat treatment vs reassurance control) make them angrier?

Huddy, L., Mason, L., & Aarøe, L. (2015). Expressive partisanship: Campaign involvement, political emotion, and partisan identity. APSR, 109(1), 1-17.

Non-Linearities

* Polynomial terms (main focus today). Introducing as regressors a variable and powers of the same variable (usually: squared, but you can add cubed, fourth power etc.).

 * Polynomial terms (main focus today). Introducing as regressors a variable and powers of the same variable (usually: squared, but you can add cubed, fourth power etc.).

*
$$Y = \alpha + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \epsilon$$

 * Polynomial terms (main focus today). Introducing as regressors a variable and powers of the same variable (usually: squared, but you can add cubed, fourth power etc.).

*
$$Y = \alpha + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \epsilon$$

* Variable transformations. Commonly, taking the natural logarithm of the variables to reduce their skew.

 * Polynomial terms (main focus today). Introducing as regressors a variable and powers of the same variable (usually: squared, but you can add cubed, fourth power etc.).

*
$$Y = \alpha + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \epsilon$$

- * Variable transformations. Commonly, taking the natural logarithm of the variables to reduce their skew.
 - * $Y = \alpha + \beta \log(X) + \epsilon$

 * Polynomial terms (main focus today). Introducing as regressors a variable and powers of the same variable (usually: squared, but you can add cubed, fourth power etc.).

*
$$Y = \alpha + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \epsilon$$

* Variable transformations. Commonly, taking the natural logarithm of the variables to reduce their skew.

* $Y = \alpha + \beta \log(X) + \epsilon$

* Both approaches are consistent with linearity assumptions: regression are still 'linear in the β s'.

* You might remember from high-school calculus the formula for a parabola: $y = ax^2 + bx + c$

- * You might remember from high-school calculus the formula for a parabola: $y = ax^2 + bx + c$
- * A regression curve with the second-order polynomial of *X* has the same functional form: $\hat{Y} = \hat{\alpha} + \hat{\beta}_1 X + \hat{\beta}_2 X^2$.

- * You might remember from high-school calculus the formula for a parabola: $y = ax^2 + bx + c$
- * A regression curve with the second-order polynomial of *X* has the same functional form: $\hat{Y} = \hat{\alpha} + \hat{\beta}_1 X + \hat{\beta}_2 X^2$.
- * Characteristics of a parabolic curve:

- * You might remember from high-school calculus the formula for a parabola: $y = ax^2 + bx + c$
- * A regression curve with the second-order polynomial of *X* has the same functional form: $\hat{Y} = \hat{\alpha} + \hat{\beta}_1 X + \hat{\beta}_2 X^2$.
- * Characteristics of a parabolic curve:
- * It is **U-shaped** ('opening up') if $\beta_2 > 0$. It is **n-shaped** ('opening down') if $\beta_2 < 0$.

- * You might remember from high-school calculus the formula for a parabola: $y = ax^2 + bx + c$
- * A regression curve with the second-order polynomial of *X* has the same functional form: $\hat{Y} = \hat{\alpha} + \hat{\beta}_1 X + \hat{\beta}_2 X^2$.
- * Characteristics of a parabolic curve:
- * It is **U-shaped** ('opening up') if $\beta_2 > 0$. It is **n-shaped** ('opening down') if $\beta_2 < 0$.

* It has **one** bend, known as its vertex, given by $-\frac{\beta_1}{2\beta_2}$

The coefficient of x² determines whether the parabola opens up or down

Example

* Does **democracy** increase or decrease **trust in government**?

Example

* Does **democracy** increase or decrease **trust in government**?

Example

* Does **democracy** increase or decrease **trust in government**?

* We gather data on **Democracy** (0-10 scale) from V-Dem, and on the average country-level **Trust in Government** (1 = none at all, 4 = a great deal) from the World Values Survey (WVS).

Govt. Trust = $\alpha + \beta_1$ Democracy + ϵ

Govt. Trust = $\alpha + \beta_1$ Democracy + ϵ

Govt. Trust = $\alpha + \beta_1$ Democracy + ϵ

Residuals of Govt. Trust ~ Democracy

democracy

Govt. Trust = $\alpha + \beta_1$ Democracy + β_2 Democracy² + ϵ

Govt. Trust = $\alpha + \beta_1$ Democracy + β_2 Democracy² + ϵ

Residuals of Govt. Trust ~ Democracy + Democracy-squared

Confidence in Government, WVS

democracy

Dependent variable:

Govt. Trust (1–4)

Intercept 3.337*** (0.152)

Democracy -0.508*** (0.076)

Democracy² 0.046^{***} (0.008)

* **Sign** of β_2 : if $\beta_2 > 0$, U-shaped curve, if $\beta_2 < 0$, n-shaped curve.

- * **Sign** of β_2 : if $\beta_2 > 0$, U-shaped curve, if $\beta_2 < 0$, n-shaped curve.
- * **Significance** of β_2 : tests against the null that the relationship is linear.

- * **Sign** of β_2 : if $\beta_2 > 0$, U-shaped curve, if $\beta_2 < 0$, n-shaped curve.
- * **Significance** of β_2 : tests against the null that the relationship is linear.
- * Vertex: $-\beta_1/(2\beta_2)$. This is where sign of the relationship changes — may fall outside the observed range of *X*.

Dependent variable:

Govt. Trust (1–4)

Intercept 3.337*** (0.152)

Democracy -0.508*** (0.076)

Democracy² 0.046^{***} (0.008)

* Usual interpretation of effect size
doesn't work: "holding all else
constant, a one-unit increase in *X* is
associated with a β₁ increase in *Y*."

 Dependent variable:

 Govt. Trust (1-4)

 Intercept
 3.337*** (0.152)

 Democracy
 -0.508*** (0.076)

Democracy² 0.046^{***} (0.008)

- * Usual interpretation of effect size
 doesn't work: "holding all else
 constant, a one-unit increase in *X* is
 associated with a β₁ increase in *Y*."
- * We can't hold all else constant. If we increase X, we also increase X^2 .

	Dependent variable.
	Govt. Trust (1–4)
Intercept	3.337*** (0.152)
Democracy	-0.508*** (0.076)
Democracy ²	$0.046^{***}(0.008)$

Donondont variable.

- * Usual interpretation of effect size
 doesn't work: "holding all else
 constant, a one-unit increase in *X* is
 associated with a β₁ increase in *Y*."
- * We can't hold all else constant. If we increase X, we also increase X^2 .
- At each value X the predicted rate
 of change in Y varies.

- * Usual interpretation of effect size
 doesn't work: "holding all else
 constant, a one-unit increase in *X* is
 associated with a β₁ increase in *Y*."
- * We can't hold all else constant. If we increase X, we also increase X^2 .
- * At each value *X* the predicted **rate of change** in *Y* varies.
- * Polynomial variable coefficients β₁
 and β₂ mean little on their own,
 they must be interpreted together

Dependent variable:

Govt. Trust (1–4)

Intercept 3.337*** (0.152)

Democracy -0.508*** (0.076)

Democracy² 0.046^{***} (0.008)

* **Instantaneous rate of change**, expressed by the **derivative**. The derivative of $\hat{Y} = \alpha + \beta_1 X + \beta_2 X^2$ in *X* is $\beta_1 + 2\beta_2 X$.

- * **Instantaneous rate of change**, expressed by the **derivative**. The derivative of $\hat{Y} = \alpha + \beta_1 X + \beta_2 X^2$ in *X* is $\beta_1 + 2\beta_2 X$.
- * In our model, $-0.508 + 0.092 \times$ Democracy

- * **Instantaneous rate of change**, expressed by the **derivative**. The derivative of $\hat{Y} = \alpha + \beta_1 X + \beta_2 X^2$ in *X* is $\beta_1 + 2\beta_2 X$.
- * In our model, $-0.508 + 0.092 \times$ Democracy
- * Rate of change if Democracy = 1:

- * **Instantaneous rate of change**, expressed by the **derivative**. The derivative of $\hat{Y} = \alpha + \beta_1 X + \beta_2 X^2$ in *X* is $\beta_1 + 2\beta_2 X$.
- * In our model, $-0.508 + 0.092 \times$ Democracy
- * Rate of change if Democracy = 1:
 - $* -0.508 + 0.092 \times 1 = -0.416$

- * **Instantaneous rate of change**, expressed by the **derivative**. The derivative of $\hat{Y} = \alpha + \beta_1 X + \beta_2 X^2$ in *X* is $\beta_1 + 2\beta_2 X$.
- * In our model, $-0.508 + 0.092 \times$ Democracy
- * Rate of change if Democracy = 1:
 - $* -0.508 + 0.092 \times 1 = -0.416$
- * Rate of change in Democracy = 5:

- * **Instantaneous rate of change**, expressed by the **derivative**. The derivative of $\hat{Y} = \alpha + \beta_1 X + \beta_2 X^2$ in *X* is $\beta_1 + 2\beta_2 X$.
- * In our model, $-0.508 + 0.092 \times$ Democracy
- * Rate of change if Democracy = 1:
 - $* -0.508 + 0.092 \times 1 = -0.416$
- * Rate of change in Democracy = 5: * $-0.508 + 0.092 \times 5 = -0.048$

- * **Instantaneous rate of change**, expressed by the **derivative**. The derivative of $\hat{Y} = \alpha + \beta_1 X + \beta_2 X^2$ in *X* is $\beta_1 + 2\beta_2 X$.
- * In our model, $-0.508 + 0.092 \times$ Democracy
- * Rate of change if Democracy = 1:
 - $* -0.508 + 0.092 \times 1 = -0.416$
- * Rate of change in Democracy = 5: * $-0.508 + 0.092 \times 5 = -0.048$
- * Rate of change in Democracy = 8:

- * **Instantaneous rate of change**, expressed by the **derivative**. The derivative of $\hat{Y} = \alpha + \beta_1 X + \beta_2 X^2$ in *X* is $\beta_1 + 2\beta_2 X$.
- * In our model, $-0.508 + 0.092 \times$ Democracy
- * Rate of change if Democracy = 1:
 - $* -0.508 + 0.092 \times 1 = -0.416$
- * Rate of change in Democracy = 5: * $-0.508 + 0.092 \times 5 = -0.048$
- * Rate of change in Democracy = 8:
 - * $-0.508 + 0.092 \times 8 = +0.228$, etc.

Polynomial Terms in R

> model1 <- lm(conf_goverment ~ democracy + I(democracy^2), data = qog)
> stargazer(model1, type = "text", single.row = TRUE)

	Dependent variable: conf_goverment		
democracy I(democracy2) Constant	-0.508*** (0.076) 0.046*** (0.008) 3.337*** (0.152)		
Observations R2 Adjusted R2 Residual Std. Error F Statistic	76 0.417 0.401 0.366 (df = 73) 26.076*** (df = 2; 73)		
======================================	*p<0.1; **p<0.05; ***p<0.01		

Visualisation: Predicted Values Plot

Visualisation: Conditional Effect Plot

Check if you understand

* How does a leader's time in office affect spending in Chinese counties?

Dependent Variable: Annual Growth Rate	Party Secretary Model Coefficient (Standard Error)	
of Expenditures Per Capita Explanatory Variables		
(Time in office) ²	-0.3946**	-0.4860**
	(0.1728)	(0.2049)
Time in office	2.4793**	3.1624**
	(1.0212)	(1.2252)
Annual growth rate of revenues per capita	0.2493***	0.2589***
	(0.0142)	(0.0166)
Annual growth rate of subsidies per capita		0.1411***
		(0.0092)

* Guo, G. (2009). China's local political budget cycles. *American Journal of Political Science*, 53(3), 621-632.

* You can add higher-order terms (X^3 , X^4 , etc.) to model more complex non-linearities. In general, a polynomial of order *n* corresponds to a curve with *n* – 1 bends.

- * You can add higher-order terms (X^3 , X^4 , etc.) to model more complex non-linearities. In general, a polynomial of order *n* corresponds to a curve with *n* – 1 bends.
- * You always want to **include lower-order terms**. E.g., if you want to have X^3 , you should also have X^2 and X.

- * You can add higher-order terms (X^3 , X^4 , etc.) to model more complex non-linearities. In general, a polynomial of order *n* corresponds to a curve with *n* – 1 bends.
- * You always want to **include lower-order terms**. E.g., if you want to have X^3 , you should also have X^2 and X.
- * If a quadratic term doesn't improve the model, it's unlikely a cubic term will do, and so on. In practice, it (almost) never makes sense to go beyond a cubic.

- * You can add higher-order terms (X^3 , X^4 , etc.) to model more complex non-linearities. In general, a polynomial of order *n* corresponds to a curve with *n* – 1 bends.
- * You always want to **include lower-order terms**. E.g., if you want to have X^3 , you should also have X^2 and X.
- * If a quadratic term doesn't improve the model, it's unlikely a cubic term will do, and so on. In practice, it (almost) never makes sense to go beyond a cubic.
- * Interpretation gets trickier. Use visualisation tools to get a sense of what you're fitting.

 \mathbb{X}

CEA45 Archived @WhiteHouseCEA45 · Follow

Replying to @WhiteHouseCEA45

To better visualize observed data, we also continually update a curve-fitting exercise to summarize COVID-19's observed trajectory. Particularly with irregular data, curve fitting can improve data visualization. As shown, IHME's mortality curves have matched the data fairly well.

Log-Transformations

Log-Transformations

* Useful when dealing with variables that are **positive** and **right-skewed**:

Log-Transformations

- * Useful when dealing with variables that are **positive** and **right-skewed**:
 - * **Income**: lots of people around the median income, and a handful of mega-rich.
- * Useful when dealing with variables that are **positive** and **right-skewed**:
 - * **Income**: lots of people around the median income, and a handful of mega-rich.
 - * Population: 50% of countries below 10m people (10⁷).
 Then there's China and India, with 1bn people (10⁹).

- * Useful when dealing with variables that are **positive** and **right-skewed**:
 - * **Income**: lots of people around the median income, and a handful of mega-rich.
 - * Population: 50% of countries below 10m people (10⁷).
 Then there's China and India, with 1bn people (10⁹).
 - * **GDP per capita:** 80% of countries below \$50k. Then, there's Luxembourg, Singapore and Qatar (> \$125k).

- * Useful when dealing with variables that are **positive** and **right-skewed**:
 - * **Income**: lots of people around the median income, and a handful of mega-rich.
 - * Population: 50% of countries below 10m people (10⁷).
 Then there's China and India, with 1bn people (10⁹).
 - * **GDP per capita:** 80% of countries below \$50k. Then, there's Luxembourg, Singapore and Qatar (> \$125k).
- * Linear relationships are unlikely with these variables as your predictors, outcomes or both.

Are Smaller Countries More Democratic?

* We can **unskew** these variables by taking their natural logarithm (notated as **log**, or **ln**). *Reminder*:

- * We can **unskew** these variables by taking their natural logarithm (notated as **log**, or **ln**). *Reminder*:
 - * If $\log(a) = b$, then $e^b = a$, where $e \approx 2.71828$.

- * We can **unskew** these variables by taking their natural logarithm (notated as **log**, or **ln**). *Reminder*:
 - * If $\log(a) = b$, then $e^b = a$, where $e \approx 2.71828$.
- * How it works in practice:

- * We can **unskew** these variables by taking their natural logarithm (notated as **log**, or **ln**). *Reminder*:
 - * If $\log(a) = b$, then $e^b = a$, where $e \approx 2.71828$.
- * How it works in practice:
 - $* \log(1) = 0$

- * We can **unskew** these variables by taking their natural logarithm (notated as **log**, or **ln**). *Reminder*:
 - * If $\log(a) = b$, then $e^b = a$, where $e \approx 2.71828$.
- * How it works in practice:
 - $* \log(1) = 0$
 - * $\log(10) \approx 2.30$

- * We can **unskew** these variables by taking their natural logarithm (notated as **log**, or **ln**). *Reminder*:
 - * If $\log(a) = b$, then $e^b = a$, where $e \approx 2.71828$.
- * How it works in practice:
 - $* \log(1) = 0$
 - * $\log(10) \approx 2.30$
 - * $\log(100) \approx 4.60$

- * We can **unskew** these variables by taking their natural logarithm (notated as **log**, or **ln**). *Reminder*:
 - * If $\log(a) = b$, then $e^b = a$, where $e \approx 2.71828$.
- * How it works in practice:
 - $* \log(1) = 0$
 - * $\log(10) \approx 2.30$
 - * $\log(100) \approx 4.60$
 - * $\log(1000) \approx 6.91$

- * We can **unskew** these variables by taking their natural logarithm (notated as **log**, or **ln**). *Reminder*:
 - * If $\log(a) = b$, then $e^b = a$, where $e \approx 2.71828$.
- * How it works in practice:
 - $* \log(1) = 0$
 - * $\log(10) \approx 2.30$
 - * $\log(100) \approx 4.60$
 - * $\log(1000) \approx 6.91$
 - * $\log(10^6) \approx 13.82$

- * We can **unskew** these variables by taking their natural logarithm (notated as **log**, or **ln**). *Reminder*:
 - * If $\log(a) = b$, then $e^b = a$, where $e \approx 2.71828$.
- * How it works in practice:
 - $* \log(1) = 0$
 - * $\log(10) \approx 2.30$
 - * $\log(100) \approx 4.60$
 - * $\log(1000) \approx 6.91$
 - * $\log(10^6) \approx 13.82$
 - * (Careful: you can't take logs of zero or negative numbers!)

 * Famous paper: Acemoglu, D., Johnson, S., & Robinson, J.
 A. (2001). The colonial origins of comparative development: An empirical investigation. *American Economic Review*, 91(5), 1369-1401.

- * Famous paper: Acemoglu, D., Johnson, S., & Robinson, J.
 A. (2001). The colonial origins of comparative development: An empirical investigation. *American Economic Review*, 91(5), 1369-1401.
- * Argument: Colonial powers set up **extractive institutions** in places where they faced high mortality rates (due to e.g. diseases). Where they can settle easily, they set up **growthinducing institutions**, like property rights. Long-run growth is thus related to initial conditions faced by settlers:

- * Famous paper: Acemoglu, D., Johnson, S., & Robinson, J.
 A. (2001). The colonial origins of comparative development: An empirical investigation. *American Economic Review*, 91(5), 1369-1401.
- * Argument: Colonial powers set up **extractive institutions** in places where they faced high mortality rates (due to e.g. diseases). Where they can settle easily, they set up **growthinducing institutions**, like property rights. Long-run growth is thus related to initial conditions faced by settlers:
- * GDP in 1995 = $\alpha + \beta$ Settler Mortality + ϵ

GDP in 1995 = $\alpha + \beta$ Settler Mortality + ϵ

GDP in 1995 = $\alpha + \beta \log(\text{Settler Mortality}) + \epsilon$

 $\log(\text{GDP in 1995}) = \alpha + \beta \log(\text{Settler Mortality}) + \epsilon$

* Interesting property of logarithms: can interpret the coefficients in terms of **percentage** change (an approximation, valid only for small increases).

- * Interesting property of logarithms: can interpret the coefficients in terms of **percentage** change (an approximation, valid only for small increases).
- * **Level-Level** model $Y = \alpha + \beta X + \epsilon$

- * Interesting property of logarithms: can interpret the coefficients in terms of **percentage** change (an approximation, valid only for small increases).
- * **Level-Level** model $Y = \alpha + \beta X + \epsilon$
 - * One-unit change in $X \rightarrow Y$ predicted to change by β

- * Interesting property of logarithms: can interpret the coefficients in terms of **percentage** change (an approximation, valid only for small increases).
- * **Level-Level** model $Y = \alpha + \beta X + \epsilon$
 - * One-unit change in $X \rightarrow Y$ predicted to change by β
- * **Level-Log** model $Y = \alpha + \beta \log(X) + \epsilon$

- * Interesting property of logarithms: can interpret the coefficients in terms of **percentage** change (an approximation, valid only for small increases).
- * **Level-Level** model $Y = \alpha + \beta X + \epsilon$
 - * One-unit change in $X \rightarrow Y$ predicted to change by β
- * **Level-Log** model $Y = \alpha + \beta \log(X) + \epsilon$
 - * 1% change in $X \rightarrow Y$ predicted to change by ($\beta/100$)

- * Interesting property of logarithms: can interpret the coefficients in terms of **percentage** change (an approximation, valid only for small increases).
- * **Level-Level** model $Y = \alpha + \beta X + \epsilon$
 - * One-unit change in $X \rightarrow Y$ predicted to change by β
- * **Level-Log** model $Y = \alpha + \beta \log(X) + \epsilon$
 - * 1% change in $X \rightarrow Y$ predicted to change by ($\beta/100$)
- * **Log-Level** model $\log(Y) = \alpha + \beta X + \epsilon$

- * Interesting property of logarithms: can interpret the coefficients in terms of **percentage** change (an approximation, valid only for small increases).
- * **Level-Level** model $Y = \alpha + \beta X + \epsilon$
 - * One-unit change in $X \rightarrow Y$ predicted to change by β
- * **Level-Log** model $Y = \alpha + \beta \log(X) + \epsilon$
 - * 1% change in $X \rightarrow Y$ predicted to change by ($\beta/100$)
- * **Log-Level** model $\log(Y) = \alpha + \beta X + \epsilon$
 - * One-unit change in $X \rightarrow Y$ predicted to change by $\beta \times 100\%$

- * Interesting property of logarithms: can interpret the coefficients in terms of **percentage** change (an approximation, valid only for small increases).
- * **Level-Level** model $Y = \alpha + \beta X + \epsilon$
 - * One-unit change in $X \rightarrow Y$ predicted to change by β
- * **Level-Log** model $Y = \alpha + \beta \log(X) + \epsilon$
 - * 1% change in $X \rightarrow Y$ predicted to change by ($\beta/100$)
- * **Log-Level** model $log(Y) = \alpha + \beta X + \epsilon$
 - * One-unit change in $X \rightarrow Y$ predicted to change by $\beta \times 100\%$
- * **Log-Log** model $\log(Y) = \alpha + \beta \log(X) + \epsilon$

- * Interesting property of logarithms: can interpret the coefficients in terms of **percentage** change (an approximation, valid only for small increases).
- * **Level-Level** model $Y = \alpha + \beta X + \epsilon$
 - * One-unit change in $X \rightarrow Y$ predicted to change by β
- * **Level-Log** model $Y = \alpha + \beta \log(X) + \epsilon$
 - * 1% change in $X \rightarrow Y$ predicted to change by ($\beta/100$)
- * **Log-Level** model $log(Y) = \alpha + \beta X + \epsilon$
 - * One-unit change in $X \rightarrow Y$ predicted to change by $\beta \times 100\%$
- * **Log-Log** model $log(Y) = \alpha + \beta log(X) + \epsilon$
 - * 1% change in $X \rightarrow Y$ changes by $\beta\%$

	Dependent variable:			
	GDP Pe: (1)	 r Capita (2)	log(GDP pe: (3)	r Capita) (4)
Settler Mortality	-3.862** (1.637)		-0.001*** (0.0003)	
log(Settler Mortality)		-3,336.467*** (485.995)		-0.570*** (0.078)
Constant	6,374.983*** (866.715)	20,929.100*** (2,337.663)	8.275*** (0.136)	10.700*** (0.374)
Observations R2 Adjusted R2 Model Type	64 0.082 0.068 Level-Level	64 0.432 0.423 Level-Log	64 0.169 0.156 Log-Level	64 0.464 0.456 Log-Log
		*p<0.1;	**p<0.05;	***p<0.01

Wrap-Up: Non-Linearities

Wrap-Up: Non-Linearities

* Polynomial terms are a very flexible tool:
- * Polynomial terms are a very flexible tool:
 - * Unlike logs, they can handle changes in effect direction over the range of the predictor, and negative values.

- * Polynomial terms are a very flexible tool:
 - * Unlike logs, they can handle changes in effect direction over the range of the predictor, and negative values.
 - * Including higher-order terms comes with the risk of overfitting. **Theory** should inform model specification.

- * Polynomial terms are a very flexible tool:
 - * Unlike logs, they can handle changes in effect direction over the range of the predictor, and negative values.
 - * Including higher-order terms comes with the risk of overfitting. **Theory** should inform model specification.
- * Log-transformation are used more narrowly:

- * Polynomial terms are a very flexible tool:
 - * Unlike logs, they can handle changes in effect direction over the range of the predictor, and negative values.
 - * Including higher-order terms comes with the risk of overfitting. **Theory** should inform model specification.
- * Log-transformation are used more narrowly:
 - * Non-linearities produced by skewed, positive variables.

- * Polynomial terms are a very flexible tool:
 - * Unlike logs, they can handle changes in effect direction over the range of the predictor, and negative values.
 - * Including higher-order terms comes with the risk of overfitting. **Theory** should inform model specification.
- * Log-transformation are used more narrowly:
 - * Non-linearities produced by skewed, positive variables.
 - * **Assume proportional relationships**: halving *X* has approximately the same effect size on *Y* as doubling *X*.

- * Beyond OLS:
 - * Logistic regression and other non-linear models (multinomial, Poisson). If you need it in your work, I can send you a gentle introduction to logistic regression from last year.
 - * ML approaches (Lasso, Ridge, Decision Trees).

- * Beyond OLS:
 - * Logistic regression and other non-linear models (multinomial, Poisson). If you need it in your work, I can send you a gentle introduction to logistic regression from last year.
 - * ML approaches (Lasso, Ridge, Decision Trees).
- * Specific ways of applying our workhorse models:
 - * Time series (panel data, survival analysis).
 - * Design-based approaches (matching, IV, RDDs).
 - * Experiments.

- * Beyond OLS:
 - * Logistic regression and other non-linear models (multinomial, Poisson). If you need it in your work, I can send you a gentle introduction to logistic regression from last year.
 - * ML approaches (Lasso, Ridge, Decision Trees).
- * Specific ways of applying our workhorse models:
 - * Time series (panel data, survival analysis).
 - * Design-based approaches (matching, IV, RDDs).
 - * Experiments.
- * Stats for goals other than inference:
 - * Measurement, classification, description of complex systems.

- * Beyond OLS:
 - * Logistic regression and other non-linear models (multinomial, Poisson). If you need it in your work, I can send you a gentle introduction to logistic regression from last year.
 - * ML approaches (Lasso, Ridge, Decision Trees).
- * Specific ways of applying our workhorse models:
 - * Time series (panel data, survival analysis).
 - * Design-based approaches (matching, IV, RDDs).
 - * Experiments.
- * Stats for goals other than inference:
 - * Measurement, classification, description of complex systems.
- * Method options are sprawling and changing fast (AI is coming for all of us) make your methods training fit your research needs, not the other way around.

- * Hilary Term 2025:
 - * Causal Inference for a taste, see Imbens (forthcoming) "Causal Inference in the Social Sciences", Annual Review of Statistics and Its Application.
 - * Computational Methods (with Rachel!)

- * Hilary Term 2025:
 - * Causal Inference for a taste, see Imbens (forthcoming) "Causal Inference in the Social Sciences", Annual Review of Statistics and Its Application.
 - * Computational Methods (with Rachel!)
- * Oxford Spring School 2025:
 - * Machine Learning
 - * Causal Inference (design-based, field experiments)
 - * Text Analysis

- * Hilary Term 2025:
 - * Causal Inference for a taste, see Imbens (forthcoming) "Causal Inference in the Social Sciences", Annual Review of Statistics and Its Application.
 - * Computational Methods (with Rachel!)
- * Oxford Spring School 2025:
 - * Machine Learning
 - * Causal Inference (design-based, field experiments)
 - * Text Analysis
- * Trinity Term 4-week courses.

- * Hilary Term 2025:
 - * Causal Inference for a taste, see Imbens (forthcoming) "Causal Inference in the Social Sciences", Annual Review of Statistics and Its Application.
 - * Computational Methods (with Rachel!)
- * Oxford Spring School 2025:
 - * Machine Learning
 - * Causal Inference (design-based, field experiments)
 - * Text Analysis
- * Trinity Term 4-week courses.
- * Can't get enough of it? Audit Intermediate Stats next year. Keep an eye out for method courses (ECPR, ICPSR, SICSS, EITM...)

- * Hilary Term 2025:
 - * Causal Inference for a taste, see Imbens (forthcoming) "Causal Inference in the Social Sciences", Annual Review of Statistics and Its Application.
 - * Computational Methods (with Rachel!)
- * Oxford Spring School 2025:
 - * Machine Learning
 - * Causal Inference (design-based, field experiments)
 - * Text Analysis
- * Trinity Term 4-week courses.
- * Can't get enough of it? Audit Intermediate Stats next year. Keep an eye out for method courses (ECPR, ICPSR, SICSS, EITM...)
- * Long-term investment will involve some self-learning.

How did you like the course?

DPIR MT24 Course Content & Teaching Feedback NEW!

Thank you for your kind attention!

Leonardo Carella leonardo.carella@nuffield.ox.ac.uk